Perfusion Parameter Estimation Using Neural Networks and Data Augmentation

被引:6
|
作者
Robben, David [1 ]
Suetens, Paul [1 ]
机构
[1] Katholieke Univ Leuven, Med Image Comp ESAT PSI, Leuven, Belgium
关键词
STROKE;
D O I
10.1007/978-3-030-11723-8_44
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Perfusion imaging plays a crucial role in acute stroke diagnosis and treatment decision making. Current perfusion analysis relies on deconvolution of the measured signals, an operation that is mathematically ill-conditioned and requires strong regularization. We propose a neural network and a data augmentation approach to predict perfusion parameters directly from the native measurements. A comparison on simulated CT Perfusion data shows that the neural network provides better estimations for both CBF and Tmax than a state of the art deconvolution method, and this over a wide range of noise levels. The proposed data augmentation enables to achieve these results with less than 100 datasets.
引用
收藏
页码:439 / 446
页数:8
相关论文
共 50 条
  • [41] Automatic attenuation map estimation from SPECT data only for brain perfusion scans using convolutional neural networks
    Chen, Yuan
    Goorden, Marlies C.
    Beekman, Freek J.
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (06):
  • [42] Fast parameter estimation of generalized extreme value distribution using neural networks
    Rai, Sweta
    Hoffman, Alexis
    Lahiri, Soumendra
    Nychka, Douglas W.
    Sain, Stephan R.
    Bandyopadhyay, Soutir
    ENVIRONMETRICS, 2024, 35 (03)
  • [43] Fast Bayesian gravitational wave parameter estimation using convolutional neural networks
    Andres-Carcasona, M.
    Martinez, M.
    Mir, Ll M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (02) : 2887 - 2894
  • [44] Tumor model parameter estimation for therapy optimization using artificial neural networks
    Puskas, Melania
    Drexler, Daniel Andras
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 1254 - 1259
  • [45] Radio halo detection in MWA data using deep neural networks and generative data augmentation
    Mishra, Ashutosh K.
    Tolley, Emma
    Krishna, Shreyam Parth
    Kneib, Jean-Paul
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2025, 538 (04) : 2905 - 2922
  • [46] Aircraft Parameter Estimation using Feedforward Neural Networks with Lyapunov Stability Analysis
    George, Sara Mohan
    Selvi, S. Sethu
    Raol, J. R.
    DEFENCE SCIENCE JOURNAL, 2022, 72 (05) : 655 - 664
  • [47] Parameter estimation for two-dimensional vector models using neural networks
    Xu, L
    AzimiSadjadi, MR
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (12) : 3090 - 3094
  • [48] Parameter estimation in active plate structures using gradient optimisation and neural networks
    Araujo, A. L.
    Soares, C. M. Mota
    Herskovits, J.
    Pedersen, P.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2006, 14 (05) : 483 - 493
  • [49] Parameter Tuning Using Adaptive Moment Estimation in Deep Learning Neural Networks
    Okewu, Emmanuel
    Misra, Sanjay
    Lius, Fernandez-Sanz
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT VI, 2020, 12254 : 261 - 272
  • [50] Parameter estimation for abrasive water jet machining process using neural networks
    Pratik J. Parikh
    Sarah S. Lam
    The International Journal of Advanced Manufacturing Technology, 2009, 40 : 497 - 502