Perfusion Parameter Estimation Using Neural Networks and Data Augmentation

被引:6
|
作者
Robben, David [1 ]
Suetens, Paul [1 ]
机构
[1] Katholieke Univ Leuven, Med Image Comp ESAT PSI, Leuven, Belgium
关键词
STROKE;
D O I
10.1007/978-3-030-11723-8_44
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Perfusion imaging plays a crucial role in acute stroke diagnosis and treatment decision making. Current perfusion analysis relies on deconvolution of the measured signals, an operation that is mathematically ill-conditioned and requires strong regularization. We propose a neural network and a data augmentation approach to predict perfusion parameters directly from the native measurements. A comparison on simulated CT Perfusion data shows that the neural network provides better estimations for both CBF and Tmax than a state of the art deconvolution method, and this over a wide range of noise levels. The proposed data augmentation enables to achieve these results with less than 100 datasets.
引用
收藏
页码:439 / 446
页数:8
相关论文
共 50 条
  • [31] Regularization parameter estimation for feedforward neural networks
    Guo, P
    Lyu, MR
    Chen, CLP
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2003, 33 (01): : 35 - 44
  • [32] Artificial neural networks for parameter estimation in geophysics
    Calderón-Macías, C
    Sen, MK
    Stoffa, PL
    GEOPHYSICAL PROSPECTING, 2000, 48 (01) : 21 - 47
  • [33] Neural networks for parameter estimation in intractable models
    Lenzi, Amanda
    Bessac, Julie
    Rudi, Johann
    Stein, Michael L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 185
  • [34] Parameter estimation of UAV from flight data using neural network
    Dhayalan, R.
    Saderla, Subrahmanyam
    Ghosh, Ajoy Kanti
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2018, 90 (02): : 302 - 311
  • [35] Underwater Image Classification Using Deep Convolutional Neural Networks and Data Augmentation
    Xu, Yifeng
    Zhang, Yang
    Wang, Huigang
    Liu, Xing
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2017,
  • [36] Environmental Sound Classification using Deep Convolutional Neural Networks and Data Augmentation
    Davis, Nithya
    Suresh, K.
    2018 IEEE RECENT ADVANCES IN INTELLIGENT COMPUTATIONAL SYSTEMS (RAICS), 2018, : 41 - 45
  • [37] Multimodal Continuous Emotion Recognition with Data Augmentation Using Recurrent Neural Networks
    Huang, Jian
    Li, Ya
    Tao, Jianhua
    Lian, Zheng
    Niu, Mingyue
    Yang, Minghao
    PROCEEDINGS OF THE 2018 AUDIO/VISUAL EMOTION CHALLENGE AND WORKSHOP (AVEC'18), 2018, : 57 - 64
  • [38] Flipping Data Augmentation of Convolutional Neural Networks Using Discrete Cosine Transforms
    Ito, Izumi
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1501 - 1505
  • [39] Estimation of Missing Data of Showcase Using Artificial Neural Networks
    Sakurai, Daiji
    Fukuyama, Yoshikazu
    Santana, Adamo
    Kawamura, Yu
    Murakami, Kenya
    Iizaka, Tatsuya
    Matsui, Tetsuro
    2017 IEEE 10TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (IWCIA), 2017, : 15 - 18
  • [40] Nonlinear systems parameter estimation using neural networks:: Application to synchronous machines
    Ahmed-Ali, Tarek
    Kenne, Godpromesse
    Lamnabhi-Lagarrigue, Francoise
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2007, 13 (04) : 365 - 382