Foreign Object Detection of Transmission Lines Based on Faster R-CNN

被引:10
|
作者
Guo, Shuqiang [1 ]
Bai, Qianlong [1 ]
Zhou, Xinxin [1 ]
机构
[1] Northeast Elect Power Univ, Jilin 132012, Jilin, Peoples R China
来源
INFORMATION SCIENCE AND APPLICATIONS | 2020年 / 621卷
关键词
Faster R-CNN; Object detection; Transmission line;
D O I
10.1007/978-981-15-1465-4_28
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The object detection method based on RCNN network model has good mobility and robustness compared with the traditional methods. Classical foreign object detection algorithms for transmission line, such as SIFT and ORB feature matching algorithms. These methods have low recognition accuracy for edge blurred images and complex background images. In view of the above deficiencies, this paper constructs a transmission line training data set based on the characteristics of the collected transmission line images, and trains the Faster R-CNN model to detect the falling objects, kites, balloons and other foreign objects in the transmission lines. The experimental results show that compared with the traditional object recognition method, Faster R-CNN not only overcomes the instability of manual extraction features, but also improves the accuracy of foreign object detection in transmission lines. It can realize the detection of foreign objects in transmission lines in complex scenes.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 50 条
  • [41] Object Recognition at Night Scene Based on DCGAN and Faster R-CNN
    Wang, Kun
    Liu, Mao Zhen
    IEEE ACCESS, 2020, 8 : 193168 - 193182
  • [42] Adversarial attacks on Faster R-CNN object detector
    Wang, Yutong
    Wang, Kunfeng
    Zhu, Zhanxing
    Wang, Fei-Yue
    NEUROCOMPUTING, 2020, 382 : 87 - 95
  • [43] Real-Time Water Surface Object Detection Based on Improved Faster R-CNN
    Zhang, Lili
    Zhang, Yi
    Zhang, Zhen
    Shen, Jie
    Wang, Huibin
    SENSORS, 2019, 19 (16)
  • [44] Object Detection Based on Faster R-CNN Algorithm with Skip Pooling and Fusion of Contextual Information
    Xiao, Yi
    Wang, Xinqing
    Zhang, Peng
    Meng, Fanjie
    Shao, Faming
    SENSORS, 2020, 20 (19) : 1 - 20
  • [45] An Improved Faster R-CNN for Same Object Retrieval
    Li, Hailiang
    Huang, Yongqian
    Zhang, Zhijun
    IEEE ACCESS, 2017, 5 : 13665 - 13676
  • [46] Forgetting Analysis by Module Probing for Online Object Detection with Faster R-CNN
    Wagner, Baptiste
    Pellerin, Denis
    Huet, Sylvain
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 576 - 580
  • [47] Face Detection With Different Scales Based on Faster R-CNN
    Wu, Wenqi
    Yin, Yingjie
    Wang, Xingang
    Xu, De
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (11) : 4017 - 4028
  • [48] Aerial Target Detection Based on Improved Faster R-CNN
    Feng Xiaoyu
    Mei Wei
    Hu Dashuai
    ACTA OPTICA SINICA, 2018, 38 (06)
  • [49] RecFRCN: Few-Shot Object Detection With Recalibrated Faster R-CNN
    Zhang, Youyou
    Lu, Tongwei
    IEEE ACCESS, 2023, 11 : 121109 - 121117
  • [50] A Dense Attention Railway Foreign Object Detection Algorithm Based on Mask R-CNN
    Gao, Shuang
    IEEE ACCESS, 2024, 12 : 85761 - 85772