Foreign Object Detection of Transmission Lines Based on Faster R-CNN

被引:10
|
作者
Guo, Shuqiang [1 ]
Bai, Qianlong [1 ]
Zhou, Xinxin [1 ]
机构
[1] Northeast Elect Power Univ, Jilin 132012, Jilin, Peoples R China
来源
INFORMATION SCIENCE AND APPLICATIONS | 2020年 / 621卷
关键词
Faster R-CNN; Object detection; Transmission line;
D O I
10.1007/978-981-15-1465-4_28
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The object detection method based on RCNN network model has good mobility and robustness compared with the traditional methods. Classical foreign object detection algorithms for transmission line, such as SIFT and ORB feature matching algorithms. These methods have low recognition accuracy for edge blurred images and complex background images. In view of the above deficiencies, this paper constructs a transmission line training data set based on the characteristics of the collected transmission line images, and trains the Faster R-CNN model to detect the falling objects, kites, balloons and other foreign objects in the transmission lines. The experimental results show that compared with the traditional object recognition method, Faster R-CNN not only overcomes the instability of manual extraction features, but also improves the accuracy of foreign object detection in transmission lines. It can realize the detection of foreign objects in transmission lines in complex scenes.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 50 条
  • [31] Multi-object surface roughness grade detection based on Faster R-CNN
    Su, Jinzhao
    Yi, Huaian
    Ling, Lin
    Shu, Aihua
    Lu, Enhui
    Jiao, Yanming
    Wang, Shuai
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (01)
  • [32] Improved Faster R-CNN for Multi-Scale Object Detection
    Li X.
    Fu C.
    Li X.
    Wang Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (07): : 1095 - 1101
  • [33] Rotated Faster R-CNN for Oriented Object Detection in Aerial Images
    Yang, Sheng
    Pei, Ziqiang
    Zhou, Feng
    Wang, Guoyou
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA2020, 2020, : 35 - 39
  • [34] Faster R-CNN with Attention Feature Map for Robust Object Detection
    Lee, Youl-Kyeong
    Jo, Kang-Hyun
    FRONTIERS OF COMPUTER VISION, 2020, 1212 : 180 - 191
  • [35] Pedestrian detection method based on Faster R-CNN
    Zhang, Hui
    Du, Yu
    Ning, Shurong
    Zhang, Yonghua
    Yang, Shuo
    Du, Chen
    2017 13TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2017, : 427 - 430
  • [36] A Supernova Detection Implementation based on Faster R-CNN
    Wu, Tianyuan
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 390 - 393
  • [37] An object detection method for catenary component images based on improved Faster R-CNN
    Wu, Changdong
    He, Xu
    Wu, Yanliang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (08)
  • [38] An Automatic Object Detection and Location System applying Faster R-CNN
    Falquete, Rodrigo Bernardes
    Cavalieri, Daniel Cruz
    Pereira, Flavio Garcia
    2018 13TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRY APPLICATIONS (INDUSCON), 2018, : 902 - 908
  • [39] Design and Implementation of an Object Detection System Using Faster R-CNN
    Wang Cheng
    Peng Zhihao
    2019 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2019), 2019, : 204 - 206
  • [40] Slippage fault diagnosis of dampers for transmission lines based on faster R-CNN and distance constraint
    Liu, Xinyu
    Lin, Yating
    Jiang, Hao
    Miao, Xiren
    Chen, Jing
    ELECTRIC POWER SYSTEMS RESEARCH, 2021, 199