Uniform sparse domination of singular integrals via dyadic shifts

被引:21
|
作者
Culiuc, Amalia [1 ]
Di Plinio, Francesco [2 ]
Ou, Yumeng [3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Virginia, Dept Math, Kerchof Hall,Box 400137, Charlottesville, VA 22904 USA
[3] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
THEOREM;
D O I
10.4310/MRL.2018.v25.n1.a2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Calderon-Zygmund decomposition, we give a novel and simple proof that L-2 bounded dyadic shifts admit a domination by positive sparse forms with linear growth in the complexity of the shift. Our estimate, coupled with Hytonen's dyadic representation theorem, upgrades to a positive sparse domination of the class u of singular integrals satisfying the assumptions of the classical T(l)-theorem of David and Journe. Furthermore, our proof extends rather easily to the R-n-valued case, yielding as a corollary the operator norm bound on the matrix weighted space L-2(TD;R-n) ([Graphic]) uniformly over T gM, which is the currently best known dependence.
引用
收藏
页码:21 / 42
页数:22
相关论文
共 50 条