Uniform sparse domination of singular integrals via dyadic shifts

被引:21
|
作者
Culiuc, Amalia [1 ]
Di Plinio, Francesco [2 ]
Ou, Yumeng [3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Virginia, Dept Math, Kerchof Hall,Box 400137, Charlottesville, VA 22904 USA
[3] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
THEOREM;
D O I
10.4310/MRL.2018.v25.n1.a2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Calderon-Zygmund decomposition, we give a novel and simple proof that L-2 bounded dyadic shifts admit a domination by positive sparse forms with linear growth in the complexity of the shift. Our estimate, coupled with Hytonen's dyadic representation theorem, upgrades to a positive sparse domination of the class u of singular integrals satisfying the assumptions of the classical T(l)-theorem of David and Journe. Furthermore, our proof extends rather easily to the R-n-valued case, yielding as a corollary the operator norm bound on the matrix weighted space L-2(TD;R-n) ([Graphic]) uniformly over T gM, which is the currently best known dependence.
引用
收藏
页码:21 / 42
页数:22
相关论文
共 50 条
  • [21] Partial Derivatives, Singular Integrals and Sobolev Spaces in Dyadic Settings
    Aimar, Hugo
    Comesatti, Juan
    Gomez, Ivana
    Nowak, Luis
    ANALYSIS IN THEORY AND APPLICATIONS, 2023, 39 (03): : 287 - 298
  • [22] Sparse domination via the helicoidal method
    Benea, Cristina
    Muscalu, Camil
    REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (06) : 2037 - 2118
  • [23] Sparse bounds for maximally truncated oscillatory singular integrals
    Krause, Ben
    Lacey, Michael T.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 20 (02) : 415 - 435
  • [24] Uniform boundedness of oscillatory singular integrals with rational phases
    Al-Qassem, Hussain
    Cheng, Leslie
    Pan, Yibiao
    FORUM MATHEMATICUM, 2025,
  • [25] MULTIPARAMETER SINGULAR INTEGRALS ON THE HEISENBERG GROUP: UNIFORM ESTIMATES
    Vitturi, Marco
    Wright, James
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (08) : 5439 - 5465
  • [26] Uniform boundedness of oscillatory singular integrals on Hardy spaces
    Cheng, LC
    Pan, YB
    PUBLICACIONS MATEMATIQUES, 2000, 44 (02) : 605 - 611
  • [27] Cp estimates for rough homogeneous singular integrals and sparse forms
    Canto, Javier
    LI, Kangwei
    Roncal, Luz
    Tapiola, Olli
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (03) : 1131 - 1131
  • [28] A Bilinear Sparse Domination for the Maximal Singular Integral Operators with Rough Kernels
    Tao, Xiangxing
    Hu, Guoen
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (06)
  • [29] Uniform (Lp, Lq) boundedness of multilinear oscillatory singular integrals
    Lu, SZ
    Wu, Q
    Yang, DC
    PROGRESS IN NATURAL SCIENCE, 2000, 10 (10) : 744 - 753