Uniform sparse domination of singular integrals via dyadic shifts

被引:21
|
作者
Culiuc, Amalia [1 ]
Di Plinio, Francesco [2 ]
Ou, Yumeng [3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Virginia, Dept Math, Kerchof Hall,Box 400137, Charlottesville, VA 22904 USA
[3] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
THEOREM;
D O I
10.4310/MRL.2018.v25.n1.a2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Calderon-Zygmund decomposition, we give a novel and simple proof that L-2 bounded dyadic shifts admit a domination by positive sparse forms with linear growth in the complexity of the shift. Our estimate, coupled with Hytonen's dyadic representation theorem, upgrades to a positive sparse domination of the class u of singular integrals satisfying the assumptions of the classical T(l)-theorem of David and Journe. Furthermore, our proof extends rather easily to the R-n-valued case, yielding as a corollary the operator norm bound on the matrix weighted space L-2(TD;R-n) ([Graphic]) uniformly over T gM, which is the currently best known dependence.
引用
收藏
页码:21 / 42
页数:22
相关论文
共 50 条
  • [1] Weighted estimates for rough bilinear singular integrals via sparse domination
    Barron, Alexander
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 779 - 811
  • [2] A SPARSE DOMINATION PRINCIPLE FOR ROUGH SINGULAR INTEGRALS
    Conde-Alonso, Jose M.
    Culiuc, Amalia
    Di Plinio, Francesco
    Ou, Yumeng
    ANALYSIS & PDE, 2017, 10 (05): : 1255 - 1284
  • [3] Domination of multilinear singular integrals by positive sparse forms
    Culiuc, Amalia
    Di Plinio, Francesco
    Ou, Yumeng
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 369 - 392
  • [4] Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals
    Grafakos, Loukas
    Wang, Zhidan
    Xue, Qingying
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)
  • [5] Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals
    Loukas Grafakos
    Zhidan Wang
    Qingying Xue
    Journal of Fourier Analysis and Applications, 2022, 28
  • [6] Sparse Domination and Weighted Inequalities for the ρ-Variation of Singular Integrals and Commutators
    Wen, Yongming
    Wu, Huoxiong
    Xue, Qingying
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (12)
  • [7] Uniform sparse domination and quantitative weighted boundedness for singular integrals and application to the dissipative quasi-geostrophic equation
    Chen, Yanping
    Guo, Zihua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 378 : 871 - 917
  • [8] Sparse domination of singular Radon transform
    Hu, Bingyang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 139 : 235 - 316
  • [9] Singular Integrals with Variable Kernels in Dyadic Settings
    Hugo Aimar
    Raquel Crescimbeni
    Luis Nowak
    Acta Mathematica Sinica, English Series, 2023, 39 : 1565 - 1579
  • [10] Singular Integrals with Variable Kernels in Dyadic Settings
    Aimar, Hugo
    Crescimbeni, Raquel
    Nowak, Luis
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (08) : 1565 - 1579