Local positivity of line bundles on smooth toric varieties and Cayley polytopes

被引:0
|
作者
Lundman, Anders [1 ]
机构
[1] Royal Inst Technol KTH, Dept Math, S-10044 Stockholm, Sweden
关键词
Osculating space; Seshadri constant; k-jet ampleness; Toric variety; Cayley polytope; Lattice polytope; SESHADRI CONSTANTS;
D O I
10.1016/j.jsc.2015.05.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any positive integer k the k-th osculating dimension at a given point x of a variety X embedded in projective space gives a measure of the local positivity of order k at that point. In this paper we show that a smooth toric embedding having the property that at every point the t-th osculating dimension is maximal if and only if t <= k, is associated to a Cayley polytope of order k. This result generalises an earlier characterisation by David Perkinson. In addition we prove that the above assumptions are equivalent to requiring that the Seshadri constant is exactly k at every point of X, generalising a result of Atsushi Ito. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 50 条
  • [41] Local Gromov-Witten invariants of canonical line bundles of toric surfaces
    Yang Fei
    Zhou Jian
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (06) : 1571 - 1582
  • [42] Local Gromov-Witten invariants of canonical line bundles of toric surfaces
    YANG Fei & ZHOU Jian Department of Mathematical Sciences
    Science China(Mathematics), 2010, 53 (06) : 1571 - 1582
  • [43] Local Gromov-Witten invariants of canonical line bundles of toric surfaces
    Fei Yang
    Jian Zhou
    Science China Mathematics, 2010, 53 : 1571 - 1582
  • [44] Algebraicity of formal varieties and positivity of vector bundles
    Huayi Chen
    Mathematische Annalen, 2012, 354 : 171 - 192
  • [45] Equivariant Abelian principal bundles on nonsingular toric varieties
    Dey, Arijit
    Poddar, Mainak
    BULLETIN DES SCIENCES MATHEMATIQUES, 2016, 140 (05): : 471 - 487
  • [46] EQUIVARIANT PRINCIPAL BUNDLES AND LOGARITHMIC CONNECTIONS ON TORIC VARIETIES
    Biswas, Indranil
    Dey, Arijit
    Poddar, Mainak
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 280 (02) : 315 - 325
  • [47] Equivariant vector bundles and logarithmic connections on toric varieties
    Biswas, Indranil
    Munoz, Vicente
    Sanchez, Jonathan
    JOURNAL OF ALGEBRA, 2013, 384 : 227 - 241
  • [48] STABILITY OF EQUIVARIANT VECTOR BUNDLES OVER TORIC VARIETIES
    Dasgupta, Jyoti
    Dey, Arijit
    Khan, Bivas
    DOCUMENTA MATHEMATICA, 2020, 25 : 1787 - 1833
  • [49] TANNAKIAN CLASSIFICATION OF EQUIVARIANT PRINCIPAL BUNDLES ON TORIC VARIETIES
    INDRANIL BISWAS
    ARIJIT DEY
    MAINAK PODDAR
    Transformation Groups, 2020, 25 : 1009 - 1035
  • [50] NORMALITY AND QUADRATICITY FOR SPECIAL AMPLE LINE BUNDLES ON TORIC VARIETIES ARISING FROM ROOT SYSTEMS
    Gashi, Qendrim R.
    Schedler, Travis
    GLASGOW MATHEMATICAL JOURNAL, 2013, 55A : 113 - 134