Local positivity of line bundles on smooth toric varieties and Cayley polytopes

被引:0
|
作者
Lundman, Anders [1 ]
机构
[1] Royal Inst Technol KTH, Dept Math, S-10044 Stockholm, Sweden
关键词
Osculating space; Seshadri constant; k-jet ampleness; Toric variety; Cayley polytope; Lattice polytope; SESHADRI CONSTANTS;
D O I
10.1016/j.jsc.2015.05.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any positive integer k the k-th osculating dimension at a given point x of a variety X embedded in projective space gives a measure of the local positivity of order k at that point. In this paper we show that a smooth toric embedding having the property that at every point the t-th osculating dimension is maximal if and only if t <= k, is associated to a Cayley polytope of order k. This result generalises an earlier characterisation by David Perkinson. In addition we prove that the above assumptions are equivalent to requiring that the Seshadri constant is exactly k at every point of X, generalising a result of Atsushi Ito. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 50 条
  • [21] Extensions of toric line bundles
    Klaus Altmann
    Amelie Flatt
    Lutz Hille
    Mathematische Zeitschrift, 2023, 304
  • [22] Extensions of toric line bundles
    Altmann, Klaus
    Flatt, Amelie
    Hille, Lutz
    MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (01)
  • [23] Positivity of vector bundles on homogeneous varieties
    Biswas, Indranil
    Hanumanthu, Krishna
    Nagaraj, D. S.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (12)
  • [24] FACETS OF SECONDARY POLYTOPES AND CHOW STABILITY OF TORIC VARIETIES
    Yotsutani, Naoto
    OSAKA JOURNAL OF MATHEMATICS, 2016, 53 (03) : 751 - 765
  • [25] Generalized toric varieties for simple nonrational convex polytopes
    Battaglia, F
    Prato, E
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2001, 2001 (24) : 1315 - 1337
  • [26] Heights of Toric Varieties, Entropy and Integration over Polytopes
    Burgos Gil, Jose Ignacio
    Philippon, Patrice
    Sombra, Martin
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 286 - 295
  • [27] Sectional class of ample line bundles on smooth projective varieties
    Fukuma, Yoshiaki
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2015, 6 (02): : 215 - 240
  • [28] Classifying smooth lattice polytopes via toric fibrations
    Dickenstein, Alicia
    Di Rocco, Sandra
    Piene, Ragni
    ADVANCES IN MATHEMATICS, 2009, 222 (01) : 240 - 254
  • [29] ON THE EXISTENCE OF CERTAIN SMOOTH TORIC VARIETIES
    GRETENKORT, J
    KLEINSCHMIDT, P
    STURMFELS, B
    DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (03) : 255 - 262
  • [30] Strongly symmetric smooth toric varieties
    Cuntz, M.
    Ren, Y.
    Trautmann, G.
    KYOTO JOURNAL OF MATHEMATICS, 2012, 52 (03) : 597 - 620