For any positive integer k the k-th osculating dimension at a given point x of a variety X embedded in projective space gives a measure of the local positivity of order k at that point. In this paper we show that a smooth toric embedding having the property that at every point the t-th osculating dimension is maximal if and only if t <= k, is associated to a Cayley polytope of order k. This result generalises an earlier characterisation by David Perkinson. In addition we prove that the above assumptions are equivalent to requiring that the Seshadri constant is exactly k at every point of X, generalising a result of Atsushi Ito. (C) 2015 Elsevier Ltd. All rights reserved.
机构:
Univ Warsaw, Fac Math Informat & Mech, Warsaw, Poland
IST Austria, Campus 1, A-3400 Klosterneuburg, AustriaUniv Warsaw, Fac Math Informat & Mech, Warsaw, Poland
机构:
UAM, CSIC, Inst Ciencias Matemat, UCM,UCM3, Calle Nicolas Cabrera 15, Madrid 28049, SpainUAM, CSIC, Inst Ciencias Matemat, UCM,UCM3, Calle Nicolas Cabrera 15, Madrid 28049, Spain
Burgos Gil, Jose Ignacio
Moriwaki, Atsushi
论文数: 0引用数: 0
h-index: 0
机构:
Kyoto Univ, Fac Sci, Dept Math, Kyoto 6068502, JapanUAM, CSIC, Inst Ciencias Matemat, UCM,UCM3, Calle Nicolas Cabrera 15, Madrid 28049, Spain
Moriwaki, Atsushi
Philippon, Patrice
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, Inst Math Jussieu, UMR 7586, Equipe Theorie Nombres, Case 247,4 Pl Jussieu, F-75252 Paris 05, FranceUAM, CSIC, Inst Ciencias Matemat, UCM,UCM3, Calle Nicolas Cabrera 15, Madrid 28049, Spain
Philippon, Patrice
Sombra, Martin
论文数: 0引用数: 0
h-index: 0
机构:
ICREA, Gran Via 585, Barcelona 08007, Spain
Univ Barcelona, Dept Algebra & Geometria, Gran Via 585, E-08007 Barcelona, SpainUAM, CSIC, Inst Ciencias Matemat, UCM,UCM3, Calle Nicolas Cabrera 15, Madrid 28049, Spain