Homological dimensions of modules of holomorphic functions on submanifolds of Stein manifolds

被引:0
|
作者
Pirkovskii, A. Yu. [1 ]
机构
[1] Natl Res Univ Higher Sch Econ, Fac Math, Moscow 117312, Russia
基金
俄罗斯基础研究基金会;
关键词
Frechet algebra; Frechet module; Homological dimension; Stein manifold; DEN BERGH DUALITY; QUOTIENT-SPACES; POWER-SERIES; ALGEBRAS; COHOMOLOGY; SUBSPACES;
D O I
10.1016/j.jfa.2014.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Stein manifold, and let Y subset of X be a closed complex submanifold. Denote by O(X) the algebra of holomorphic functions on X. We show that the weak (i.e., flat) homological dimension of O(Y) as a Frechet O(X)-module equals the codimension of Y in X. In the case where X and Y are of Liouville type, the same formula is proved for the projective homological dimension of O(Y) over O(X). On the other hand, we show that if X is of Liouville type and Y is hyperconvex, then the projective homological dimension of O(Y) over O(X) equals the dimension of X. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:6663 / 6683
页数:21
相关论文
共 50 条