Proper holomorphic immersions into Stein manifolds with the density property

被引:0
|
作者
Franc Forstnerič
机构
[1] University of Ljubljana,Faculty of Mathematics and Physics
[2] Institute of Mathematics,undefined
[3] Physics and Mechanics,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that every Stein manifold S admits a proper holomorphic immersion into any Stein manifold of dimension 2 dim S enjoying the density property or the volume density property.
引用
收藏
页码:585 / 596
页数:11
相关论文
共 50 条
  • [1] Proper holomorphic immersions into Stein manifolds with the density property
    Forstneric, Franc
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (02): : 585 - 596
  • [2] Proper holomorphic embeddings into stein manifolds with the density property
    Rafael Andrist
    Franc Forstnerič
    Tyson Ritter
    Erlend Fornæss Wold
    Journal d'Analyse Mathématique, 2016, 130 : 135 - 150
  • [3] Proper holomorphic embeddings into stein manifolds with the density property
    Andrist, Rafael
    Forstneric, Franc
    Ritter, Tyson
    Wold, Erlend Fornaess
    JOURNAL D ANALYSE MATHEMATIQUE, 2016, 130 : 135 - 150
  • [4] Chaotic Holomorphic Automorphisms of Stein Manifolds with the Volume Density Property
    Leandro Arosio
    Finnur Lárusson
    The Journal of Geometric Analysis, 2019, 29 : 1744 - 1762
  • [5] Chaotic Holomorphic Automorphisms of Stein Manifolds with the Volume Density Property
    Arosio, Leandro
    Larusson, Finnur
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (02) : 1744 - 1762
  • [6] RUNGE TUBES IN STEIN MANIFOLDS WITH THE DENSITY PROPERTY
    Forstneric, Franc
    Wold, Erlend Fornaess
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 569 - 575
  • [7] RIEMANN SURFACES IN STEIN MANIFOLDS WITH THE DENSITY PROPERTY
    Andrist, Rafael B.
    Wold, Erlend Fornaess
    ANNALES DE L INSTITUT FOURIER, 2014, 64 (02) : 681 - 697
  • [8] Parametric jet interpolation for Stein manifolds with the density property
    Ramos-Peon, Alexandre
    Ugolini, Riccardo
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (08)
  • [9] On holomorphic immersions into Kahler manifolds of constant holomorphic sectional curvature
    Mok, N
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (Suppl 1): : 123 - 145
  • [10] New examples of Stein manifolds with volume density property
    De Vito G.
    Complex Analysis and its Synergies, 2020, 6 (2)