Lower Bounds for the Size of Nondeterministic Circuits

被引:0
|
作者
Morizumi, Hiroki [1 ]
机构
[1] Shimane Univ, Interdisciplinary Grad Sch Sci & Engn, Matsue, Shimane 6908504, Japan
来源
COMPUTING AND COMBINATORICS | 2015年 / 9198卷
关键词
D O I
10.1007/978-3-319-21398-9_23
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nondeterministic circuits are a nondeterministic computation model in circuit complexity theory. In this paper, we prove a 3(n-1) lower bound for the size of nondeterministic U-2-circuits computing the parity function. It is known that the minimum size of (deterministic) U-2-circuits computing the parity function exactly equals 3(n-1). Thus, our result means that nondeterministic computation is useless to compute the parity function by U-2-circuits and cannot reduce the size from 3(n - 1). To the best of our knowledge, this is the first nontrivial lower bound for the size of nondeterministic circuits (including formulas, constant depth circuits, and so on) with unlimited nondeterminism for an explicit Boolean function. We also discuss an approach to proving lower bounds for the size of deterministic circuits via lower bounds for the size of nondeterministic restricted circuits.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [41] Lower Bounds for Arithmetic Circuits via the Hankel Matrix
    Fijalkow, Nathanael
    Lagarde, Guillaume
    Ohlmann, Pierre
    Serre, Olivier
    COMPUTATIONAL COMPLEXITY, 2021, 30 (02)
  • [43] 2 LOWER BOUNDS FOR CIRCUITS OVER THE BASIS (AND,V,-)
    JUKNA, SP
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 324 : 371 - 380
  • [44] Depth Lower Bounds against Circuits with Sparse Orientation
    Koroth, Sajin
    Sarma, Jayalal
    FUNDAMENTA INFORMATICAE, 2017, 152 (02) : 123 - 144
  • [45] Nondeterministic circuit lower bounds from mildly derandomizing Arthur-Merlin games
    Barış Aydınlıoğlu
    Dieter van Melkebeek
    computational complexity, 2017, 26 : 79 - 118
  • [46] Log-Concavity and Lower Bounds for Arithmetic Circuits
    Garcia-Marcos, Ignacio
    Koiran, Pascal
    Tavenas, Sebastien
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT II, 2015, 9235 : 361 - 371
  • [47] LOWER BOUNDS FOR MODULAR COUNTING BY CIRCUITS WITH MODULAR GATES
    BARRINGTON, DM
    STRAUBING, H
    LATIN '95: THEORETICAL INFORMATICS, 1995, 911 : 60 - 71
  • [48] Depth Lower Bounds against Circuits with Sparse Orientation
    Koroth, Sajin
    Sarma, Jayalal
    COMPUTING AND COMBINATORICS, COCOON 2014, 2014, 8591 : 596 - 607
  • [49] Lower bounds for modular counting by circuits with modular gates
    Barrington, DAM
    Straubing, H
    COMPUTATIONAL COMPLEXITY, 1999, 8 (03) : 258 - 272
  • [50] Algorithms and Lower Bounds for Comparator Circuits from Shrinkage
    Cavalar, Bruno P.
    Lu, Zhenjian
    ALGORITHMICA, 2023, 85 (7) : 2131 - 2155