Lower Bounds for the Size of Nondeterministic Circuits

被引:0
|
作者
Morizumi, Hiroki [1 ]
机构
[1] Shimane Univ, Interdisciplinary Grad Sch Sci & Engn, Matsue, Shimane 6908504, Japan
来源
COMPUTING AND COMBINATORICS | 2015年 / 9198卷
关键词
D O I
10.1007/978-3-319-21398-9_23
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nondeterministic circuits are a nondeterministic computation model in circuit complexity theory. In this paper, we prove a 3(n-1) lower bound for the size of nondeterministic U-2-circuits computing the parity function. It is known that the minimum size of (deterministic) U-2-circuits computing the parity function exactly equals 3(n-1). Thus, our result means that nondeterministic computation is useless to compute the parity function by U-2-circuits and cannot reduce the size from 3(n - 1). To the best of our knowledge, this is the first nontrivial lower bound for the size of nondeterministic circuits (including formulas, constant depth circuits, and so on) with unlimited nondeterminism for an explicit Boolean function. We also discuss an approach to proving lower bounds for the size of deterministic circuits via lower bounds for the size of nondeterministic restricted circuits.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [21] Recent progress on lower bounds for arithmetic circuits
    Saraf, Shubhangi
    2014 IEEE 29TH CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2014, : 155 - 160
  • [22] Lower bounds for Boolean circuits of bounded negation
    Jukna, Stasys
    Lingas, Andrzej
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2022, 129 : 90 - 105
  • [23] Polynomial vicinity circuits and nonlinear lower bounds
    Regan, KW
    TWELFTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 1997, : 61 - 68
  • [24] LOWER BOUNDS ON THE AREA COMPLEXITY OF BOOLEAN CIRCUITS
    HROMKOVIC, J
    LOZKIN, SA
    RYBKO, AI
    SAPOZENKO, AA
    SKALIKOVA, NA
    THEORETICAL COMPUTER SCIENCE, 1992, 97 (02) : 285 - 300
  • [25] On Lower Bounds for Constant Width Arithmetic Circuits
    Arvind, V.
    Joglekar, Pushkar S.
    Srinivasan, Srikanth
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 637 - 646
  • [26] Elusive Functions and Lower Bounds for Arithmetic Circuits
    Raz, Ran
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 711 - 720
  • [27] Lower Bounds for Tropical Circuits and Dynamic Programs
    Stasys Jukna
    Theory of Computing Systems, 2015, 57 : 160 - 194
  • [28] Elusive Functions and Lower Bounds for Arithmetic Circuits
    Raz, Ran
    Theory of Computing, 2010, 6 : 135 - 177
  • [29] Exponential lower bounds on the size of constant-depth threshold circuits with small energy complexity
    Uchizawa, Kei
    Takimoto, Eiji
    THEORETICAL COMPUTER SCIENCE, 2008, 407 (1-3) : 474 - 487
  • [30] OPTIMAL LOWER BOUNDS ON THE DEPTH OF POLYNOMIAL-SIZE THRESHOLD CIRCUITS FOR SOME ARITHMETIC FUNCTIONS
    WEGENER, I
    INFORMATION PROCESSING LETTERS, 1993, 46 (02) : 85 - 87