Data-driven techniques for fault detection in anaerobic digestion process

被引:61
|
作者
Kazemi, Pezhman [1 ]
Bengoa, Christophe [1 ]
Steyer, Jean-Philippe [2 ]
Giralt, Jaume [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain
[2] Univ Montpellier, LBE, INRA, 102 Ave Etangs, F-11100 Narbonne, France
关键词
BSM2; Bootstrapping; Anaerobic digestion; Soft-sensor; Neural network; CUSUM chart; BENCHMARK SIMULATION-MODEL; WASTE-WATER; NEURAL-NETWORK; DIAGNOSIS; PREDICTION; SEARCH; SIZE;
D O I
10.1016/j.psep.2020.12.016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Anaerobic digestion (AD) is an appropriate process for bio-energy (biogas) production from waste and wastewater receiving a high level of attention at both academic and industrial scale due to increasing public awareness regarding environmental protection and energy security. Monitoring such processes is an imperative task to ensure optimized operation and prevent failures and serious consequences during the operation of the plant. To fulfill this task, a practical data-driven framework for fault detection in AD is proposed and validated on a simulated data set obtained using the benchmark simulation model No.2 (BSM2) from the International Water Association (IWA). The proposed framework is based on data-driven soft-sensors predicting total volatile fatty acids (VFA), mainly consisting of acetate, propionate, valerate and butyrate concentrations inside the digester. The VFA concentration is considered because it does not only reflect the current process health, but it is also sensitive to the incoming feeding imbalances. VFA soft-sensors using different advanced techniques such as support vector machine (SVM), extreme learning machine (ELM) and ensemble of neural network (ENN) are tested and compared in terms of accuracy and fault detection (FD) robustness. A principal component analysis (PCA) model was also developed to compare the proposed approaches with the traditional FD method. By applying soft-sensors, the residual signal, i.e., the difference between estimated and measured VFA values can be generated. This residual signal can then be used in combination with univariate statistical control charts to detect the faults. A comparison of the proposed FD framework with PCA method clearly demonstrates the over performance and feasibility of the proposed monitoring framework. (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:905 / 915
页数:11
相关论文
共 50 条
  • [41] Fault detection of uncertain nonlinear process using interval-valued data-driven approach
    Harkat, M. -F.
    Mansouri, M.
    Nounou, M.
    Nounou, H.
    CHEMICAL ENGINEERING SCIENCE, 2019, 205 : 36 - 45
  • [42] Fault detection of uncertain nonlinear process using interval-valued data-driven approach
    Dhibi, Khaled
    Fezai, Radhia
    Bouzrara, Kais
    Mansouri, Majdi
    Kouadri, Abdelmalek
    Harkat, Mohamed-Faouzi
    PROCEEDINGS OF THE 2020 17TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD 2020), 2020, : 585 - 590
  • [43] A novel two-stage fault detection and tracking method of hot-melt extrusion process based on data-driven techniques
    Zhang, Mingjie
    Chen, Zhuyun
    Deng, Xu
    Jin, Gang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)
  • [44] Progress of data-driven and knowledge-driven process monitoring and fault diagnosis for industry process
    Liu, Qiang
    Chai, Tian-You
    Qin, S-Joe
    Zhao, Li-Jie
    Kongzhi yu Juece/Control and Decision, 2010, 25 (06): : 801 - 807
  • [45] Data-Driven Approach for Fault Detection and Diagnostic in Semiconductor Manufacturing
    Fan, Shu-Kai S.
    Hsu, Chia-Yu
    Tsai, Du-Ming
    He, Fei
    Cheng, Chun-Chung
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (04) : 1925 - 1936
  • [46] Data-driven Fault Detection and Diagnosis for HVAC water chillers
    Beghi, A.
    Brignoli, R.
    Cecchinato, L.
    Menegazzo, G.
    Rampazzo, M.
    Simmini, F.
    CONTROL ENGINEERING PRACTICE, 2016, 53 : 79 - 91
  • [47] Data-driven fault detection and estimation in thermal pulse combustors
    Chakraborty, S.
    Gupta, S.
    Ray, A.
    Mukhopadhyay, A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2008, 222 (G8) : 1097 - 1108
  • [48] An approach for robust data-driven fault detection with industrial application
    Yin, Shen
    Wang, Guang
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 3317 - 3322
  • [49] An H∞ approach to data-driven simultaneous fault detection and control
    Salim, M.
    Khosrowjerdi, M. J.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2017, 34 (04) : 1195 - 1213
  • [50] Fault detection, diagnosis and data-driven modeling in HVAC chillers
    Namburu, SM
    Luo, JH
    Azam, M
    Choi, K
    Pattipati, KR
    Signal Processing, Sensor Fusion, and Target Recognition XIV, 2005, 5809 : 143 - 154