Data-driven techniques for fault detection in anaerobic digestion process

被引:61
|
作者
Kazemi, Pezhman [1 ]
Bengoa, Christophe [1 ]
Steyer, Jean-Philippe [2 ]
Giralt, Jaume [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain
[2] Univ Montpellier, LBE, INRA, 102 Ave Etangs, F-11100 Narbonne, France
关键词
BSM2; Bootstrapping; Anaerobic digestion; Soft-sensor; Neural network; CUSUM chart; BENCHMARK SIMULATION-MODEL; WASTE-WATER; NEURAL-NETWORK; DIAGNOSIS; PREDICTION; SEARCH; SIZE;
D O I
10.1016/j.psep.2020.12.016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Anaerobic digestion (AD) is an appropriate process for bio-energy (biogas) production from waste and wastewater receiving a high level of attention at both academic and industrial scale due to increasing public awareness regarding environmental protection and energy security. Monitoring such processes is an imperative task to ensure optimized operation and prevent failures and serious consequences during the operation of the plant. To fulfill this task, a practical data-driven framework for fault detection in AD is proposed and validated on a simulated data set obtained using the benchmark simulation model No.2 (BSM2) from the International Water Association (IWA). The proposed framework is based on data-driven soft-sensors predicting total volatile fatty acids (VFA), mainly consisting of acetate, propionate, valerate and butyrate concentrations inside the digester. The VFA concentration is considered because it does not only reflect the current process health, but it is also sensitive to the incoming feeding imbalances. VFA soft-sensors using different advanced techniques such as support vector machine (SVM), extreme learning machine (ELM) and ensemble of neural network (ENN) are tested and compared in terms of accuracy and fault detection (FD) robustness. A principal component analysis (PCA) model was also developed to compare the proposed approaches with the traditional FD method. By applying soft-sensors, the residual signal, i.e., the difference between estimated and measured VFA values can be generated. This residual signal can then be used in combination with univariate statistical control charts to detect the faults. A comparison of the proposed FD framework with PCA method clearly demonstrates the over performance and feasibility of the proposed monitoring framework. (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:905 / 915
页数:11
相关论文
共 50 条
  • [21] An LWPR-Based Data-Driven Fault Detection Approach for Nonlinear Process Monitoring
    Wang, Guang
    Yin, Shen
    Kaynak, Okyay
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (04) : 2016 - 2023
  • [22] Data-Driven Method of Fault Detection in Technical Systems
    Zhirabok, Alexey
    Pavlov, Sergey
    25TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION, 2014, 2015, 100 : 242 - 248
  • [23] Online Data-Driven Fault Detection for Robotic Systems
    Golombek, Raphael
    Wrede, Sebastian
    Hanheide, Marc
    Heckmann, Martin
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 3011 - 3016
  • [24] A Data-Driven Methodology for Fault Detection in Electromechanical Actuators
    Chirico, Anthony J., III
    Kolodziej, Jason R.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2014, 136 (04):
  • [25] Intelligent and Data-Driven Fault Detection of Photovoltaic Plants
    Yao, Siya
    Kang, Qi
    Zhou, Mengchu
    Abusorrah, Abdullah
    Al-Turki, Yusuf
    PROCESSES, 2021, 9 (10)
  • [26] A Data-Driven Approach of Fault Detection for LTI Systems
    Chen Zhaoxu
    Fang Huajing
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 6174 - 6179
  • [27] Data-Driven Fault Detection for Vehicle Lateral Dynamics
    Wang Yulei
    Yuan Jingxin
    Chen Hong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 7269 - 7274
  • [28] Comparison of Data-Driven Reconstruction Methods For Fault Detection
    Baraldi, Piero
    Di Maio, Francesco
    Genini, Davide
    Zio, Enrico
    IEEE TRANSACTIONS ON RELIABILITY, 2015, 64 (03) : 852 - 860
  • [29] A DATA-DRIVEN FAULT DETECTION APPROACH WITH PERFORMANCE OPTIMIZATION
    Li, Linlin
    Ding, Steven X.
    Peng, Kaixiang
    Han, Huayun
    Yang, Ying
    Yang, Xu
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2018, 96 (02): : 507 - 514
  • [30] Cold Start Approach for Data-Driven Fault Detection
    Grbovic, Mihajlo
    Li, Weichang
    Subrahmanya, Niranjan A.
    Usadi, Adam K.
    Vucetic, Slobodan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (04) : 2264 - 2273