A Simple Method to Design Robust Fractional-order Lead Compensator

被引:17
|
作者
Jadhav, Sharad P. [1 ]
Chile, Rajan H. [2 ]
Hamde, Satish T. [2 ]
机构
[1] Ramrao Adik Inst Technol, Dept Instrumentat Engn, Navi Mumbai 400706, Maharashtra, India
[2] Shri Guru Gobind Singhji Inst Engn & Technol, Dept Instrumentat Engn, Nanded 431606, Maharashtra, India
关键词
Fractional calculus; fractional-order lead compensator; fractional-order system; integer-order lead compensator; robust performance;
D O I
10.1007/s12555-016-0131-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a generalized and simple analytical method to design robust fractional-order lead compensator (FOLC). The aim of the proposed fractional-order compensator is to adjust the system's Bode phase curve to achieve the required phase margin at a specified frequency. The structure selected in this paper is more generalized and novel. It is easy to implement for a real world application. The method proposed is frequency domain and parameters of fractional compensator are selected from the plant information and specifications. This FOLC satisfies the specifications on static error constant, K-SS, gain crossover frequency, omega(c) and phase margin, phi(m). The applicability of the proposed method is demonstrated with illustrative examples. From the simulation results obtained, it is observed that FOLC gives robust and stable performance as compared to existing FOLC and integer order lead compensator (IOLC).
引用
收藏
页码:1236 / 1248
页数:13
相关论文
共 50 条
  • [31] Novel Rational Approximated Fractional Order Lead Compensator
    Trivedi, Rishika
    Padhy, Prabin Kumar
    IETE JOURNAL OF RESEARCH, 2023, 69 (10) : 7092 - 7105
  • [32] Robust Fractional-order PID Tuning Method for a Plant with an Uncertain Parameter
    Xu Li
    Lifu Gao
    International Journal of Control, Automation and Systems, 2021, 19 : 1302 - 1310
  • [33] Robust Fractional-order PID Tuning Method for a Plant with an Uncertain Parameter
    Li, Xu
    Gao, Lifu
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2021, 19 (03) : 1302 - 1310
  • [34] Design of a fractional-order fuzzy PI controller for fractional-order chaotic systems
    Han, Wei
    Gao, Bingkun
    Guo, Haoxuan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 4825 - 4830
  • [35] Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters
    Chen, Kai
    Tang, Rongnian
    Li, Chuang
    Wei, Pengna
    NONLINEAR DYNAMICS, 2018, 94 (01) : 415 - 427
  • [36] Robust Stabilizing Regions of Fractional-order PIControllers for Fractional-order Systems with Time-delays
    Zhe Gao
    LiRong Zhai
    YanDong Liu
    International Journal of Automation and Computing, 2017, (03) : 340 - 349
  • [37] Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters
    Kai Chen
    Rongnian Tang
    Chuang Li
    Pengna Wei
    Nonlinear Dynamics, 2018, 94 : 415 - 427
  • [38] Robust Fractional-Order Proportional-Integral Observer for Synchronization of Chaotic Fractional-Order Systems
    Ibrahima N’Doye
    Khaled Nabil Salama
    Taous-Meriem Laleg-Kirati
    IEEE/CAA Journal of Automatica Sinica, 2019, 6 (01) : 268 - 277
  • [39] Robust Fractional-Order Proportional-Integral Observer for Synchronization of Chaotic Fractional-Order Systems
    N'Doye, Ibrahima
    Salama, Khaled Nabil
    Laleg-Kirati, Taous-Meriem
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (01) : 268 - 277
  • [40] Design of Fractional-order Controller for Fractional-order Systems using Bode's Ideal Loop Transfer Function Method
    Patil, Diptee S.
    Patil, Mukesh D.
    Vyawahare, Vishwesh A.
    2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL INSTRUMENTATION AND CONTROL (ICIC), 2015, : 490 - 495