A Simple Method to Design Robust Fractional-order Lead Compensator

被引:17
|
作者
Jadhav, Sharad P. [1 ]
Chile, Rajan H. [2 ]
Hamde, Satish T. [2 ]
机构
[1] Ramrao Adik Inst Technol, Dept Instrumentat Engn, Navi Mumbai 400706, Maharashtra, India
[2] Shri Guru Gobind Singhji Inst Engn & Technol, Dept Instrumentat Engn, Nanded 431606, Maharashtra, India
关键词
Fractional calculus; fractional-order lead compensator; fractional-order system; integer-order lead compensator; robust performance;
D O I
10.1007/s12555-016-0131-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a generalized and simple analytical method to design robust fractional-order lead compensator (FOLC). The aim of the proposed fractional-order compensator is to adjust the system's Bode phase curve to achieve the required phase margin at a specified frequency. The structure selected in this paper is more generalized and novel. It is easy to implement for a real world application. The method proposed is frequency domain and parameters of fractional compensator are selected from the plant information and specifications. This FOLC satisfies the specifications on static error constant, K-SS, gain crossover frequency, omega(c) and phase margin, phi(m). The applicability of the proposed method is demonstrated with illustrative examples. From the simulation results obtained, it is observed that FOLC gives robust and stable performance as compared to existing FOLC and integer order lead compensator (IOLC).
引用
收藏
页码:1236 / 1248
页数:13
相关论文
共 50 条
  • [21] DESIGN OF UNKNOWN INPUT FRACTIONAL-ORDER OBSERVERS FOR FRACTIONAL-ORDER SYSTEMS
    N'Doye, Ibrahima
    Darouach, Mohamed
    Voos, Holger
    Zasadzinski, Michel
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (03) : 491 - 500
  • [22] μ-Synthesis for Fractional-Order Robust Controllers
    Mihaly, Vlad
    Susca, Mircea
    Morar, Dora
    Stanese, Mihai
    Dobra, Petru
    MATHEMATICS, 2021, 9 (08)
  • [23] Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers
    Saleh Sayyad Delshad
    MohammadMostafa Asheghan
    Mohammadtaghi Hamidi Beheshti
    Advances in Difference Equations, 2010
  • [24] Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers
    Delshad, Saleh Sayyad
    Asheghan, Mohammad Mostafa
    Beheshti, Mohammadtaghi Hamidi
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [25] Control fractional-order continuous chaotic system via a simple fractional-order controller
    Zhang, Dong
    Yang, Shou-liang
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 770 - 773
  • [26] Fractional-Order Dynamic Output Feedback Sliding Mode Control Design for Robust Stabilization of Uncertain Fractional-Order Nonlinear Systems
    Dadras, Sara
    Momeni, Hamid Reza
    ASIAN JOURNAL OF CONTROL, 2014, 16 (02) : 489 - 497
  • [27] Fractional-Order Robust Control Design under parametric uncertain approach
    Martins-Gomes, Marcus C.
    Ayres Junior, Florindo A. de C.
    da Costa Junior, Carlos T.
    de Bessa, Iury V.
    Farias, Nei Junior da S.
    de Medeiros, Renan L. P.
    Silva, Luiz E. S.
    Lucena Junior, Vicente F. de
    ISA TRANSACTIONS, 2024, 153 : 420 - 432
  • [28] PARETO OPTIMAL ROBUST DESIGN OF FUZZY FRACTIONAL-ORDER PID CONTROLLERS
    Nariman-zadeh, Nader
    Hajiloo, Amir
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 4735 - 4742
  • [29] Robust controller design of a class of uncertain fractional-order nonlinear systems
    Liu, Heng
    Zhang, Xiulan
    Li, Ning
    Lv, Hui
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 390 - 394
  • [30] Design of Robust Fractional-order Controller for 4-Leg Inverter
    Shegne, Rohan
    Patil, Mukesh D.
    Vyawahare, Vishwesh A.
    Bhusari, Balu P.
    2016 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS (PEDES), 2016,