A Simple Method to Design Robust Fractional-order Lead Compensator

被引:17
|
作者
Jadhav, Sharad P. [1 ]
Chile, Rajan H. [2 ]
Hamde, Satish T. [2 ]
机构
[1] Ramrao Adik Inst Technol, Dept Instrumentat Engn, Navi Mumbai 400706, Maharashtra, India
[2] Shri Guru Gobind Singhji Inst Engn & Technol, Dept Instrumentat Engn, Nanded 431606, Maharashtra, India
关键词
Fractional calculus; fractional-order lead compensator; fractional-order system; integer-order lead compensator; robust performance;
D O I
10.1007/s12555-016-0131-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a generalized and simple analytical method to design robust fractional-order lead compensator (FOLC). The aim of the proposed fractional-order compensator is to adjust the system's Bode phase curve to achieve the required phase margin at a specified frequency. The structure selected in this paper is more generalized and novel. It is easy to implement for a real world application. The method proposed is frequency domain and parameters of fractional compensator are selected from the plant information and specifications. This FOLC satisfies the specifications on static error constant, K-SS, gain crossover frequency, omega(c) and phase margin, phi(m). The applicability of the proposed method is demonstrated with illustrative examples. From the simulation results obtained, it is observed that FOLC gives robust and stable performance as compared to existing FOLC and integer order lead compensator (IOLC).
引用
收藏
页码:1236 / 1248
页数:13
相关论文
共 50 条
  • [1] A simple method to design robust fractional-order lead compensator
    Sharad P. Jadhav
    Rajan H. Chile
    Satish T. Hamde
    International Journal of Control, Automation and Systems, 2017, 15 : 1236 - 1248
  • [2] Modeling, analysis and design for fractional-order lead compensator through extended frequency method
    Wang Jifeng
    Li Yuankai
    WMSCI 2007: 11TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS, 2007, : 164 - +
  • [3] Robust Fractional-Order Lag/Lead Compensators
    El-Khazali, Reyad
    2018 IEEE 61ST INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2018, : 817 - 820
  • [4] An optimal robust design method for fractional-order reset controller
    Wang, Shaohua
    Sun, Yixiu
    Li, Xiaoqing
    Han, Bin
    Luo, Ying
    ASIAN JOURNAL OF CONTROL, 2023, 25 (02) : 1086 - 1101
  • [5] Design of robust fractional-order lead-lag controller for uncertain systems
    Khiabani, Ataollah Gogani
    Babazadeh, Reza
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (18): : 2447 - 2455
  • [6] The fractional order lead compensator
    Monje, CA
    Calderón, AJ
    Vinagre, BM
    Feliu, V
    ICCC 2004: SECOND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL CYBERNETICS, PROCEEDINGS, 2004, : 347 - 352
  • [7] Design of Fractional-Order Lead Compensator for a Car Suspension System Based on Curve-Fitting Approximation
    Memlikai, Evisa
    Kapoulea, Stavroula
    Psychalinos, Costas
    Baranowski, Jerzy
    Bauer, Waldemar
    Tutaj, Andrzej
    Piatek, Pawel
    FRACTAL AND FRACTIONAL, 2021, 5 (02)
  • [8] General robustness analysis and robust fractional-order PD controller design for fractional-order plants
    Liu, Lu
    Zhang, Shuo
    Xue, Dingyu
    Chen, Yang Quan
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12): : 1730 - 1736
  • [9] Simplified Fractional-Order Design of A Mimo Robust Controller
    Patrick Lanusse
    Massinissa Tari
    Fractional Calculus and Applied Analysis, 2019, 22 : 1177 - 1202
  • [10] SIMPLIFIED FRACTIONAL-ORDER DESIGN OF A MIMO ROBUST CONTROLLER
    Lanusse, Patrick
    Tari, Massinissa
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (05) : 1177 - 1202