Critical fixed points in class D superconductors

被引:8
|
作者
Kagalovsky, Victor [1 ]
Nemirovsky, Demitry [1 ]
机构
[1] Sami Shamoon Coll Engn, IL-84100 Beer Sheva, Israel
关键词
QUANTUM; LOCALIZATION; MODEL;
D O I
10.1103/PhysRevB.81.033406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study in detail a critical line on the phase diagram of the Cho-Fisher network model separating three different phases: metallic and two distinct localized phases with different quantized thermal Hall conductances. This system describes noninteracting quasiparticles in disordered superconductors that have neither time-reversal nor spin-rotational invariance. We find that in addition to a tricritical fixed point W-T on the critical line, separating two localized phases, there exists an additional repulsive fixed point W-N (where the vortex disorder concentration W-N<W-T), which splits RG flow into opposite directions: toward a clean Ising model at W=0 and toward W-T.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] FINDING FIXED POINTS ON A CLASS OF CONVEX UNBOUNDED SETS
    Xu, Zhonghai
    Li, Xiangyang
    Su, Menglong
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2012, 9 (02): : 157 - 161
  • [32] Singularity of the London Penetration Depth at Quantum Critical Points in Superconductors
    Chowdhury, Debanjan
    Swingle, Brian
    Berg, Erez
    Sachdev, Subir
    PHYSICAL REVIEW LETTERS, 2013, 111 (15)
  • [33] Third order differential equations with fixed critical points
    Adjabi, Yasin
    Jarad, Fahd
    Kessi, Arezki
    Mugan, Ugurhan
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (01) : 238 - 248
  • [34] Third order differential equations with fixed critical points
    Ait-Mokhtar, S
    REGULAR & CHAOTIC DYNAMICS, 2004, 9 (01): : 35 - 45
  • [35] On critical exponents in fixed points of binary κ-uniform morphisms
    Krieger, D
    STACS 2006, PROCEEDINGS, 2006, 3884 : 104 - 114
  • [36] Disordered Quantum Critical Fixed Points from Holography
    Huang, Xiaoyang
    Sachdev, Subir
    Lucas, Andrew
    PHYSICAL REVIEW LETTERS, 2023, 131 (14)
  • [37] Behaviour of fixed and critical points of the -family of iterative methods
    Campos, B.
    Cordero, A.
    Torregrosa, J. R.
    Vindel, P.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 53 (03) : 807 - 827
  • [38] Fixed points of the multivariate smoothing transform: the critical case
    Kolesko, Konrad
    Mentemeier, Sebastian
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 24
  • [39] Differential equations of the third order with critical fixed points
    Chazy, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1907, 145 : 1263 - 1265
  • [40] Regarding the differential systems of critical fixed points.
    Painleve, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1900, 130 : 767 - 770