Critical fixed points in class D superconductors

被引:8
|
作者
Kagalovsky, Victor [1 ]
Nemirovsky, Demitry [1 ]
机构
[1] Sami Shamoon Coll Engn, IL-84100 Beer Sheva, Israel
关键词
QUANTUM; LOCALIZATION; MODEL;
D O I
10.1103/PhysRevB.81.033406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study in detail a critical line on the phase diagram of the Cho-Fisher network model separating three different phases: metallic and two distinct localized phases with different quantized thermal Hall conductances. This system describes noninteracting quasiparticles in disordered superconductors that have neither time-reversal nor spin-rotational invariance. We find that in addition to a tricritical fixed point W-T on the critical line, separating two localized phases, there exists an additional repulsive fixed point W-N (where the vortex disorder concentration W-N<W-T), which splits RG flow into opposite directions: toward a clean Ising model at W=0 and toward W-T.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Upper critical field in superconductors near ferromagnetic quantum critical points: UCoGe
    Tada, Yasuhiro
    Kawakami, Norio
    Fujimoto, Satoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80
  • [22] CONSTRUCTION OF FIXED-POINTS OF A CLASS OF NONLINEAR MAPPINGS
    KANNAN, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 41 (02) : 430 - 438
  • [23] FIXED POINTS AND CONVERGENCE RESULTS FOR A CLASS OF CONTRACTIVE MAPPINGS
    Reich, Simeon
    Zaslavski, Alexander J.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (05): : 665 - 671
  • [24] Positive fixed points for a class of nonlinear operators and applications
    Berzig, Maher
    Samet, Bessem
    POSITIVITY, 2013, 17 (02) : 235 - 255
  • [25] GENERIC EXISTENCE OF FIXED POINTS FOR A CLASS OF NONEXPANSIVE MAPPINGS
    Reich, Simeon
    Zaslavski, Alexander J.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (04) : 793 - 800
  • [26] A new class of nonexpansive type mappings and fixed points
    Ljubomir B. Ćirić
    Czechoslovak Mathematical Journal, 1999, 49 : 891 - 899
  • [27] Positive fixed points for a class of nonlinear operators and applications
    Maher Berzig
    Bessem Samet
    Positivity, 2013, 17 : 235 - 255
  • [28] A new class of nonexpansive type mappings and fixed points
    Ciric, LB
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1999, 49 (04) : 891 - 899
  • [29] On the Study of Fixed Points for a New Class of α-Admissible Mappings
    Darwish, Mohamed Abdalla
    Jleli, Mohamed
    O'Regan, Donal
    Samet, Bessem
    MATHEMATICS, 2019, 7 (12)
  • [30] PAIRS OF FIXED POINTS FOR A CLASS OF OPERATORS ON HILBERT SPACES
    Mokhtari, Abdelhak
    Saoudi, Kamel
    Repovs, Dusan D.
    FIXED POINT THEORY, 2024, 25 (02): : 667 - 676