Design of partially adaptive arrays using the singular-value decomposition

被引:14
|
作者
Yang, H
Ingram, MA
机构
[1] School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta
关键词
adaptive arrays;
D O I
10.1109/8.575635
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of partially adaptive array design is to reduce the number of adaptive weights without significantly degrading the performance of the adaptive array, Previous work includes numerical techniques for approximately minimizing the average generalized sidelobe canceller (GSC) output power for a desired number of adaptive weights, where the average is over a range of jammer parameters, Our new ''power-space method'' also attempts to minimize the average GSC output power, but under a constraint that the reduced-dimensional solutions for all of the scenario trials lie in the same subspace, This constraint allows us to use the singular value decomposition to get the rank-reducing transformation, thereby simplifying the optimization problem, Using computer simulation, we show that our transformation yields lower output power in comparison with a previously reported example that used the numerical methods. The simplicity of the method allows large ranges of jammer parameters to be considered, Using our transformation, we consider how closely the reduced-rank solutions match the full-rank solutions and how the quality of this match relates to the output power of the partially adaptive array.
引用
收藏
页码:843 / 850
页数:8
相关论文
共 50 条
  • [31] Photoacoustic image reconstruction in an attenuating medium using singular-value decomposition
    Modgil, Dimple
    La Riviere, Patrick J.
    2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, 2009, : 3763 - 3767
  • [32] Subharmonic analysis using singular-value decomposition of ultrasound contrast agents
    Mamou, Jonathan
    Ketterling, Jeffrey A.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2009, 125 (06): : 4078 - 4091
  • [33] SUBSPACE-BASED SIGNAL ANALYSIS USING SINGULAR-VALUE DECOMPOSITION
    VANDERVEEN, AJ
    DEPRETTERE, EF
    SWINDLEHURST, AL
    PROCEEDINGS OF THE IEEE, 1993, 81 (09) : 1277 - 1308
  • [34] THE SINGULAR-VALUE DECOMPOSITION OF THE SQUARE ROOTS OF THE IDENTITY MATRIX
    GOEREE, J
    NEUDECKER, H
    DRURY, SW
    STYAN, GPH
    ECONOMETRIC THEORY, 1995, 11 (03) : 648 - 653
  • [35] COMPUTING THE SINGULAR-VALUE DECOMPOSITION ON THE ILLIAC-IV
    LUK, FT
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1980, 6 (04): : 524 - 539
  • [36] A PARALLEL ALGORITHM FOR COMPUTING THE SINGULAR-VALUE DECOMPOSITION OF A MATRIX
    JESSUP, ER
    SORENSEN, DC
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (02) : 530 - 548
  • [37] Singular-value decomposition for experimental data of dynamical systems
    Ma, Junhai
    Chen, Yushu
    Liu, Zengrong
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 12 (03): : 323 - 330
  • [38] Singular-value decomposition and electromagnetic coherence of optical beams
    Luo, Meilan
    Laatikainen, Jyrki
    Friberg, Ari T.
    Korotkova, Olga
    Setala, Tero
    OPTICS LETTERS, 2022, 47 (20) : 5337 - 5340
  • [39] SINGULAR-VALUE DECOMPOSITION FOR CROSS-WELL TOMOGRAPHY
    MICHELENA, RJ
    GEOPHYSICS, 1993, 58 (11) : 1655 - 1661
  • [40] Suboptimum CFAR detectors based on singular-value decomposition
    Sanz-Gonzalez, J. L.
    Alvarez-Vaquero, F.
    Gonzalez-Garcia, J. E.
    ELECTRONICS LETTERS, 2007, 43 (23) : 1311 - 1312