A recovery-based linear C0 finite element method for a fourth-order singularly perturbed Monge-Ampere equation

被引:5
|
作者
Chen, Hongtao [1 ,2 ]
Feng, Xiaobing [3 ]
Zhang, Zhimin [4 ,5 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
[3] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[4] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[5] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Monge-Ampere equation; Vanishing moment method; Gradient recovery; Linear finite element; 65N30; 35J60;
D O I
10.1007/s10444-021-09847-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops a new recovery-based linear C-0 finite element method for approximating the weak solution of a fourth-order singularly perturbed Monge-Ampere equation, which is known as the vanishing moment approximation of the Monge-Ampere equation. The proposed method uses a gradient recovery technique to define a discrete Laplacian for a given linear C-0 finite element function (offline), the discrete Laplacian is then employed to discretize the biharmonic operator appeared in the equation. It is proved that the proposed C-0 linear finite element method has a unique solution using a fixed point argument and the corresponding error estimates are derived in various norms. Numerical experiments are also provided to verify the theoretical error estimates and to demonstrate the efficiency of the proposed recovery-based linear C-0 finite element method.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] A C0-NONCONFORMING QUADRILATERAL FINITE ELEMENT FOR THE FOURTH-ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM
    Bao, Yuan
    Meng, Zhaoliang
    Luo, Zhongxuan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (05): : 1981 - 2001
  • [42] An efficient finite-element method and error analysis for the fourth-order elliptic equation in a circular domain
    Peng, Na
    Wang, Caiqun
    An, Jing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (09) : 1785 - 1802
  • [43] One-dimensional patch-recovery finite element method for fourth-order elliptic problems
    Andreev, AB
    Dimov, IT
    Racheva, MR
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 108 - 115
  • [44] A Finite Element/Operator-Splitting Method for the Numerical Solution of the Two Dimensional Elliptic Monge-Ampere Equation (vol 79, pg 1, 2019)
    Glowinski, Roland
    Liu, Hao
    Leung, Shingyu
    Qian, Jianliang
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 48 - 48
  • [45] A fourth-order H1-Galerkin mixed finite element method for Kuramoto-Sivashinsky equation
    Doss, L. Jones Tarcius
    Nandini, A. P.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (02) : 445 - 477
  • [46] Conforming finite element method for the time-fractional nonlinear stochastic fourth-order reaction diffusion equation
    Liu, Xinfei
    Yang, Xiaoyuan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (05) : 3657 - 3676
  • [47] Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity
    Octavio A. González-Estrada
    Sundararajan Natarajan
    Juan José Ródenas
    Hung Nguyen-Xuan
    Stéphane P. A. Bordas
    Computational Mechanics, 2013, 52 : 37 - 52
  • [48] Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity
    Gonzalez-Estrada, Octavio A.
    Natarajan, Sundararajan
    Jose Rodenas, Juan
    Hung Nguyen-Xuan
    Bordas, Stephane P. A.
    COMPUTATIONAL MECHANICS, 2013, 52 (01) : 37 - 52
  • [49] Residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems
    Du, Shaohong
    Lin, Runchang
    Zhang, Zhimin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 412
  • [50] A finite element for piezoelectric multilayered plates:: Combined higher-order and piecewise linear C0 formulation
    Cotoni, V
    Masson, P
    Côté, F
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2006, 17 (02) : 155 - 166