Residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems

被引:1
|
作者
Du, Shaohong [1 ]
Lin, Runchang [2 ]
Zhang, Zhimin [3 ,4 ]
机构
[1] Chongqing Jiaotong Univ, Sch Math & Stat, Chongqing 400074, Peoples R China
[2] Texas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USA
[3] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Fourth order elliptic problem; Singular perturbation; Mixed finite element method; Residual-based a posteriori error estimator; PENALTY METHOD; CONVERGENCE; APPROXIMATION; EQUATION;
D O I
10.1016/j.cam.2022.114323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider mixed finite element approximation of a singularly perturbed fourth-order elliptic problem with two different boundary conditions, and present a new measure of the error, whose components are balanced with respect to the perturbation parameter. With different boundary conditions, the simply supported plate model and the clamped plate model are considered. In particular, a balanced energy norm has been defined. Based on the new norm, residual-based a posteriori estimators are developed for both problems, which are uniform with respect to both the perturbation parameter and the mesh function. A novel analysis approach is introduced for the clamped plate model to address certain difficulty of the problem. Numerical examples are provided to confirm theoretical findings. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A note on the efficiency of residual-based a-posteriori error estimators for some mixed finite element methods
    Gatica, GN
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 17 : 218 - 233
  • [2] Some new residual-based a posteriori error estimators for the mortar finite element methods
    Feng Wang
    Xuejun Xu
    Numerische Mathematik, 2012, 120 : 543 - 571
  • [3] Some new residual-based a posteriori error estimators for the mortar finite element methods
    Wang, Feng
    Xu, Xuejun
    NUMERISCHE MATHEMATIK, 2012, 120 (03) : 543 - 571
  • [4] RESIDUAL-BASED A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC INTERFACE PROBLEMS APPROXIMATED BY IMMERSED FINITE ELEMENT METHODS
    Chen, Yanping
    Lu, Jiao
    Wang, Yang
    Huang, Yunqing
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (04) : 997 - 1018
  • [5] Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
    Du, Shaohong
    Sun, Shuyu
    Xie, Xiaoping
    NUMERISCHE MATHEMATIK, 2016, 134 (01) : 197 - 222
  • [6] Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
    Shaohong Du
    Shuyu Sun
    Xiaoping Xie
    Numerische Mathematik, 2016, 134 : 197 - 222
  • [7] Residual-Based a Posteriori Error Estimation for Immersed Finite Element Methods
    He, Cuiyu
    Zhang, Xu
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 2051 - 2079
  • [8] Residual-Based a Posteriori Error Estimation for Immersed Finite Element Methods
    Cuiyu He
    Xu Zhang
    Journal of Scientific Computing, 2019, 81 : 2051 - 2079
  • [9] Residual-based a posteriori error estimation for mixed virtual element methods
    Munar, Mauricio
    Cangiani, Andrea
    Velasquez, Ivan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 166 : 182 - 197
  • [10] A posteriori error estimates for fourth order hyperbolic control problems by mixed finite element methods
    Hou, Chunjuan
    Guo, Zhanwei
    Guo, Lianhong
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)