Residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems

被引:1
|
作者
Du, Shaohong [1 ]
Lin, Runchang [2 ]
Zhang, Zhimin [3 ,4 ]
机构
[1] Chongqing Jiaotong Univ, Sch Math & Stat, Chongqing 400074, Peoples R China
[2] Texas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USA
[3] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Fourth order elliptic problem; Singular perturbation; Mixed finite element method; Residual-based a posteriori error estimator; PENALTY METHOD; CONVERGENCE; APPROXIMATION; EQUATION;
D O I
10.1016/j.cam.2022.114323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider mixed finite element approximation of a singularly perturbed fourth-order elliptic problem with two different boundary conditions, and present a new measure of the error, whose components are balanced with respect to the perturbation parameter. With different boundary conditions, the simply supported plate model and the clamped plate model are considered. In particular, a balanced energy norm has been defined. Based on the new norm, residual-based a posteriori estimators are developed for both problems, which are uniform with respect to both the perturbation parameter and the mesh function. A novel analysis approach is introduced for the clamped plate model to address certain difficulty of the problem. Numerical examples are provided to confirm theoretical findings. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Long Chen
    Jun Hu
    Xuehai Huang
    Hongying Man
    Science China Mathematics, 2018, 61 : 973 - 992
  • [42] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Long Chen
    Jun Hu
    Xuehai Huang
    Hongying Man
    ScienceChina(Mathematics), 2018, 61 (06) : 973 - 992
  • [43] Residual-based a posteriori error estimation for hp-adaptive finite element methods for the Stokes equations
    Ghesmati, Arezou
    Bangerth, Wolfgang
    Turcksin, Bruno
    JOURNAL OF NUMERICAL MATHEMATICS, 2019, 27 (04) : 237 - 252
  • [44] A posteriori error estimates for a dual finite element method for singularly perturbed reaction–diffusion problems
    JaEun Ku
    Martin Stynes
    BIT Numerical Mathematics, 2024, 64
  • [45] A posteriori error estimators for nonconforming finite element methods
    Dari, E
    Duran, R
    Padra, C
    Vampa, V
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (04): : 385 - 400
  • [46] ERROR ESTIMATES OF MIXED FINITE ELEMENT APPROXIMATIONS FOR A CLASS OF FOURTH ORDER ELLIPTIC CONTROL PROBLEMS
    Hou, Tianliang
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (04) : 1127 - 1144
  • [47] Residual-based a posteriori error estimate for a mixed Reißner-Mindlin plate finite element method
    Carsten Carstensen
    Joachim Schöberl
    Numerische Mathematik, 2006, 103 : 225 - 250
  • [48] AN ANISOTROPIC NONCONFORMING ELEMENT FOR FOURTH ORDER ELLIPTIC SINGULARLY PERTURBED PROBLEM
    Chen, Shaochun
    Liu, Minfang
    Qiao, Zhonghua
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2010, 7 (04) : 766 - 784
  • [49] Residual-based a posteriori error estimates for the hp version of the finite element discretization of the elliptic Robin boundary control problem
    Gbeya, Samuel
    Houedanou, Koffi Wilfrid
    Nyaga, Lewis
    Ahounou, Bernardin
    RESULTS IN APPLIED MATHEMATICS, 2022, 14
  • [50] A RESIDUAL-BASED POSTERIORI ERROR ESTIMATES FOR hp FINITE ELEMENT SOLUTIONS OF GENERAL BILINEAR OPTIMAL CONTROL PROBLEMS
    Lu, Zuliang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 665 - 682