RESIDUAL-BASED A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC INTERFACE PROBLEMS APPROXIMATED BY IMMERSED FINITE ELEMENT METHODS

被引:0
|
作者
Chen, Yanping [1 ]
Lu, Jiao [2 ]
Wang, Yang [3 ]
Huang, Yunqing [4 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[3] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Peoples R China
[4] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Interface problems; a posteriori error estimator; immersed finite element methods; adaptive refined meshes; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a residual-based a posteriori error estimator for partially penalized immersed finite element (PPIFE) approximation to elliptic interface problems. Utilizing the error equation for the PPIFE approximation, we construct an a posteriori error estimator. Properly weighted coefficients are proposed for the terms in indicators to overcome the dependence of the efficiency constants on the jump of the diffusion coefficients across the interface. The PPIFE method is based on non-body-fitted mesh, and hence we perform detailed analysis on the local efficiency bounds of the estimator on regular and irregular interface elements with different techniques. We introduce a new approach, which does not involve the Helmholtz decomposition, to give the reliability bounds of the estimator with an L2 representation of the true error as the main tool. More importantly, the efficiency and reliability constants are independent of the interface location and the mesh size. Numerical experiments are provided to illustrate the efficiency of the estimator and the adaptive mesh refinement for different jump rates or interface geometries.
引用
收藏
页码:997 / 1018
页数:22
相关论文
共 50 条
  • [1] Residual-Based a Posteriori Error Estimation for Immersed Finite Element Methods
    He, Cuiyu
    Zhang, Xu
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 2051 - 2079
  • [2] Residual-Based a Posteriori Error Estimation for Immersed Finite Element Methods
    Cuiyu He
    Xu Zhang
    Journal of Scientific Computing, 2019, 81 : 2051 - 2079
  • [3] RECOVERY-BASED A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC INTERFACE PROBLEMS BASED ON PARTIALLY PENALIZED IMMERSED FINITE ELEMENT METHODS
    Chen, Yanping
    Deng, Zhirou
    Huang, Yunqing
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (01) : 126 - 155
  • [4] Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
    Du, Shaohong
    Sun, Shuyu
    Xie, Xiaoping
    NUMERISCHE MATHEMATIK, 2016, 134 (01) : 197 - 222
  • [5] Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
    Shaohong Du
    Shuyu Sun
    Xiaoping Xie
    Numerische Mathematik, 2016, 134 : 197 - 222
  • [6] Residual-based a posteriori error estimates for nonconforming finite element approximation to parabolic interface problems
    Ray, Tanushree
    Sinha, Rajen Kumar
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 2935 - 2962
  • [7] Residual-based a posteriori error estimation for contact problems approximated by Nitsche's method
    Chouly, Franz
    Fabre, Mathieu
    Hild, Patrick
    Pousin, Jerome
    Renard, Yves
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (02) : 921 - 954
  • [8] Residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems
    Du, Shaohong
    Lin, Runchang
    Zhang, Zhimin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 412
  • [9] Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems
    Lin, Tao
    Lin, Yanping
    Sun, Weiwei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 7 (04): : 807 - 823
  • [10] Residual-based a posteriori error estimation for mixed virtual element methods
    Munar, Mauricio
    Cangiani, Andrea
    Velasquez, Ivan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 166 : 182 - 197