RESIDUAL-BASED A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC INTERFACE PROBLEMS APPROXIMATED BY IMMERSED FINITE ELEMENT METHODS

被引:0
|
作者
Chen, Yanping [1 ]
Lu, Jiao [2 ]
Wang, Yang [3 ]
Huang, Yunqing [4 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[3] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Peoples R China
[4] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Interface problems; a posteriori error estimator; immersed finite element methods; adaptive refined meshes; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a residual-based a posteriori error estimator for partially penalized immersed finite element (PPIFE) approximation to elliptic interface problems. Utilizing the error equation for the PPIFE approximation, we construct an a posteriori error estimator. Properly weighted coefficients are proposed for the terms in indicators to overcome the dependence of the efficiency constants on the jump of the diffusion coefficients across the interface. The PPIFE method is based on non-body-fitted mesh, and hence we perform detailed analysis on the local efficiency bounds of the estimator on regular and irregular interface elements with different techniques. We introduce a new approach, which does not involve the Helmholtz decomposition, to give the reliability bounds of the estimator with an L2 representation of the true error as the main tool. More importantly, the efficiency and reliability constants are independent of the interface location and the mesh size. Numerical experiments are provided to illustrate the efficiency of the estimator and the adaptive mesh refinement for different jump rates or interface geometries.
引用
收藏
页码:997 / 1018
页数:22
相关论文
共 50 条
  • [31] Guaranteed a posteriori error estimator for mixed finite element methods of elliptic problems
    Kim, Kwang-Yeon
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (24) : 11820 - 11831
  • [32] Local, residual-based a posteriori error estimates forcing adaptive boundary element methods
    Schulz, H
    Wendland, WL
    BOUNDARY ELEMENT TOPICS, 1997, : 445 - 470
  • [33] On residual-based a posteriori error estimation in hp-FEM
    J.M. Melenk
    B.I. Wohlmuth
    Advances in Computational Mathematics, 2001, 15 : 311 - 331
  • [34] On residual-based a posteriori error estimation in hp-FEM
    Melenk, JM
    Wohlmuth, BI
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) : 311 - 331
  • [35] Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems
    Lu, Zuliang
    Zhang, Shuhua
    Hou, Chuanjuan
    Liu, Hongyan
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 18
  • [36] Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems
    Zuliang Lu
    Shuhua Zhang
    Chuanjuan Hou
    Hongyan Liu
    Boundary Value Problems, 2016
  • [37] Residual-based a posteriori error estimate for a nonconforming Reissner-Mindlin plate finite element
    Carstensen, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) : 2034 - 2044
  • [38] Posteriori finite element error estimation for diffusion problems
    Adjerid, Slimane
    Belguendouz, Belkacem
    Flaherty, Joseph E.
    SIAM Journal on Scientific Computing, 21 (02): : 728 - 746
  • [39] A posteriori finite element error estimation for diffusion problems
    Adjerid, S
    Belguendouz, B
    Flaherty, JE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 728 - 746
  • [40] A posteriori error estimation for generalized finite element methods
    Strouboulis, T
    Zhang, L
    Wang, D
    Babuska, I
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (9-12) : 852 - 879