Semi-supervised Multi-view Sentiment Analysis

被引:2
|
作者
Lazarova, Gergana [1 ]
Koychev, Ivan [1 ]
机构
[1] Sofia Univ St Kliment Ohridski, Sofia, Bulgaria
关键词
Sentiment analysis; Semi-supervised learning; Genetic algorithms;
D O I
10.1007/978-3-319-24069-5_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised learning combines labeled and unlabeled examples in order to find better future predictions. Multi-view learning is another way to improve the prediction by combining training examples from more than one sources of data. In this paper, a semi-supervised multi-view learning approach is proposed for sentiment analysis in the Bulgarian language. Because there is little labeled data in Bulgarian, a second English view is also used. A genetic algorithm is applied for regression function learning. Based on the labeled examples and the agreement among the views on the unlabeled examples the error of the algorithm is optimized, striving after minimal regularized risk. The performance of the algorithm is compared to its supervised equivalent and shows an improvement of the prediction performance.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 50 条
  • [31] Semi-supervised Deep Representation Learning for Multi-View Problems
    Noroozi, Vahid
    Bahaadini, Sara
    Zheng, Lei
    Xie, Sihong
    Shao, Weixiang
    Yu, Philip S.
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 56 - 64
  • [32] Multi-View Clustering and Semi-Supervised Classification with Adaptive Neighbours
    Nie, Feiping
    Cai, Guohao
    Li, Xuelong
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2408 - 2414
  • [33] Multi-view Semi-supervised Learning Using Privileged Information
    Smirnov, Evgueni
    Delava, Richard
    Diris, Ron
    Nikolaev, Nikolay
    24TH INTERNATIONAL CONFERENCE ON ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2023, 2023, 1826 : 144 - 152
  • [34] Semi-supervised one-pass multi-view learning
    Changming Zhu
    Zhe Wang
    Rigui Zhou
    Lai Wei
    Xiafen Zhang
    Yi Ding
    Neural Computing and Applications, 2019, 31 : 8117 - 8134
  • [35] Semi-Supervised Multi-View Learning for Gene Network Reconstruction
    Ceci, Michelangelo
    Pio, Gianvito
    Kuzmanovski, Vladimir
    Dzeroski, Saso
    PLOS ONE, 2015, 10 (12):
  • [36] Joint consensus and diversity for multi-view semi-supervised classification
    Wenzhang Zhuge
    Chenping Hou
    Shaoliang Peng
    Dongyun Yi
    Machine Learning, 2020, 109 : 445 - 465
  • [37] Trusted Semi-Supervised Multi-View Classification With Contrastive Learning
    Wang, Xiaoli
    Wang, Yongli
    Wang, Yupeng
    Huang, Anqi
    Liu, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8268 - 8278
  • [38] Inductive Multi-View Semi-supervised Learning with a Consensus Graph
    N. Ziraki
    A. Bosaghzadeh
    F. Dornaika
    Z. Ibrahim
    N. Barrena
    Cognitive Computation, 2023, 15 : 904 - 913
  • [39] Adaptive Multi-view Semi-supervised Nonnegative Matrix Factorization
    Wang, Jing
    Wang, Xiao
    Tian, Feng
    Liu, Chang Hong
    Yu, Hongchuan
    Liu, Yanbei
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 435 - 444
  • [40] Semi-supervised one-pass multi-view learning
    Zhu, Changming
    Wang, Zhe
    Zhou, Rigui
    Wei, Lai
    Zhang, Xiafen
    Ding, Yi
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (11): : 8117 - 8134