Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury

被引:146
|
作者
Bai, Yun [1 ,2 ]
Han, Yu-di [2 ,3 ]
Yan, Xin-long [4 ,5 ]
Ren, Jing [2 ,3 ]
Zeng, Quan [4 ]
Li, Xiao-dong [3 ,6 ]
Pei, Xue-tao [4 ]
Han, Yan [2 ]
机构
[1] Nankai Univ, Sch Med, Tianjin, Peoples R China
[2] Peoples Liberat Army Gen Hosp, Dept Plast & Reconstruct Surg, Beijing 100853, Peoples R China
[3] Chinese PLA, Sch Med, Beijing 100853, Peoples R China
[4] Beijing Inst Transfus Med, Stern Cell & Regenerat Med Lab, 27 Taiping Rd, Beijing 100850, Peoples R China
[5] Beijing Univ Technol, Life Sci & Bioengn Dept, Beijing 100124, Peoples R China
[6] Bethune Int Peace Hosp, Burn & Plast Surg, Shijiazhuang 050000, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Skin flap transplantation; lschemia-reperfusion injury; Adipose-derived stem cells; Exosomes; Hydrogen peroxide; Neovascularization; ANGIOGENESIS;
D O I
10.1016/j.bbrc.2018.04.065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of ischemic disease or injury and may be an alternative treatment for cell therapy. This aim of the study was to evaluate whether exosomes derived from adipose mesenchymal stem cell (ADSC) can protect the skin flap during ischemia-reperfusion (I/R) injury and induce neovascularization. Methods: To investigate the effects of exosomes in the I/R injury of flap transplantation in vivo, flaps were subjected to 6 h of ischemia by ligating the left superficial inferior epigastric vessels (SIEA) followed by blood perfusion. Exosomes derived from normal ADSC (ADSC-exos) and exosomes derived from ADSC preconditioned with H2O2 (H2O2-ADSC-exos) were injected into the flaps. Then, the blood perfusion unit (BPU) of the flaps was measured by Laser Doppler Perfusion Imaging (LDPI) and microvessel density was determined by the endothelial with cell marker CD31 with Immunohistochemistry (IHC) staining. Inflammatory cell infiltration of the skin flap and apoptosis were detected by hematoxylin & eosin staining (H&E) and the TdT-mediated biotinylated dUTP nick end-labeling (TUNEL) technique. Results: In vivo, exosomes significantly increased flap survival and capillary density compared to I/R on postoperative day 5, and decreased the inflammatory reaction and apoptosis in the skin flap (P < 0.05). Furthermore, H2O2-ADSC-exos had better outcomes compared to normal exosomes (P < 0.05). ADSC-exos could significantly increase human umbilical vein endothelial cell (HUVEC) proliferation (P < 0.05), but no statistic difference was found in exosomes derived from different microenvironments (P > 0.05). HUVEC co-cultured with H2O2-ADSC-exos increased the migration ratio and generated more cord-like structures compared to ADSC-exos and the control group (P < 0.05). Conclusion: ADSC-exos can enhance skin flap survival, promote neovascularization and alleviate the inflammation reaction and apoptosis in the skin flap after I/R injury. The use of a specific microenvironment for in vitro stem cell culture, such as one containing a low concentration of H2O2, will facilitate the development of customized exosomes for cell-free therapeutic applications in skin flap transplantation. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:310 / 317
页数:8
相关论文
共 50 条
  • [41] Mesenchymal stem cell-derived exosomes: versatile nanomaterials for skin wound treatment
    Xiao, Yuzhen
    Li, Hexi
    Zhang, Junhui
    Yang, Songyun
    Zhang, Chunsen
    Huang, Yizhou
    Tang, Xin
    Xie, Huiqi
    NANO RESEARCH, 2024, 17 (04) : 2836 - 2856
  • [42] Recent Progress in Mesenchymal Stem Cell-Derived Exosomes for Skin Wound Repair
    Xie, Peilin
    Xue, Xiaodong
    Li, Xiaodong
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2024, 82 (03) : 1651 - 1663
  • [43] Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration
    Ha, Dae Hyun
    Kim, Hyun-keun
    Lee, Joon
    Kwon, Hyuck Hoon
    Park, Gyeong-Hun
    Yang, Steve Hoseong
    Jung, Jae Yoon
    Choi, Hosung
    Lee, Jun Ho
    Sung, Sumi
    Yi, Yong Weon
    Cho, Byong Seung
    CELLS, 2020, 9 (05)
  • [44] Adipose-derived mesenchymal stem cells therapy for acute kidney injury induced by ischemia-reperfusion in a rat model
    Zhang, Jian-Bo
    Wang, Xiao-Qiao
    Lu, Guo-Lin
    Huang, Huan-Sen
    Xu, Shi-Yuan
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2017, 44 (12): : 1232 - 1240
  • [45] Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats
    Sun, Cheuk-Kwan
    Chang, Chia-Lo
    Lin, Yu-Chun
    Kao, Ying-Hsien
    Chang, Li-Teh
    Yen, Chia-Hung
    Shao, Pei-Lin
    Chen, Chih-Hung
    Leu, Steve
    Yip, Hon-Kan
    CRITICAL CARE MEDICINE, 2012, 40 (04) : 1279 - 1290
  • [46] Human Adipose Mesenchymal Stem Cell-Derived Exosomes: A Key Player in Wound Healing
    June Seok Heo
    Sinyoung Kim
    Chae Eun Yang
    Youjeong Choi
    Seung Yong Song
    Hyun Ok Kim
    Tissue Engineering and Regenerative Medicine, 2021, 18 : 537 - 548
  • [47] The immunomodulatory properties of adipose mesenchymal stem cell-derived exosomes are induced by inflammatory cytokines
    Domenis, Rossana
    Quaglia, Sara
    Cifu, Adriana
    Pistis, Cinzia
    Fabris, Martina
    Moretti, Massimo
    Vicario, Annalisa
    Niazi, Kayvan R.
    Curcio, Francesco
    FASEB JOURNAL, 2017, 31
  • [48] Human Adipose Mesenchymal Stem Cell-Derived Exosomes: A Key Player in Wound Healing
    Heo, June Seok
    Kim, Sinyoung
    Yang, Chae Eun
    Choi, Youjeong
    Song, Seung Yong
    Kim, Hyun Ok
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2021, 18 (04) : 537 - 548
  • [49] Effects of primed adipose mesenchymal stem cell-derived exosomes on immunomodulation in Behcet uveitis
    Gozel, Merve
    Aydemir, Ayse Dilara
    Kaleli, Humeyra Nur
    Canbulat, Zehra
    Guleser, Umit Yasar
    Kesim, Cem
    Kizilok, Billur Sezgin
    Sahin, Afsun
    Ucar, Didar
    Hatemi, Gulen
    Hasanreisoglu, Murat
    ACTA OPHTHALMOLOGICA, 2024, 102
  • [50] Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in Spinal Cord Injury
    An, Jing
    Chen, Bo
    Zhang, Rui
    Tian, Ding
    Shi, Kuohao
    Zhang, Lingling
    Zhang, Gaorong
    Wang, Jingchao
    Yang, Hao
    MOLECULAR NEUROBIOLOGY, 2025, 62 (01) : 1291 - 1315