Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury

被引:146
|
作者
Bai, Yun [1 ,2 ]
Han, Yu-di [2 ,3 ]
Yan, Xin-long [4 ,5 ]
Ren, Jing [2 ,3 ]
Zeng, Quan [4 ]
Li, Xiao-dong [3 ,6 ]
Pei, Xue-tao [4 ]
Han, Yan [2 ]
机构
[1] Nankai Univ, Sch Med, Tianjin, Peoples R China
[2] Peoples Liberat Army Gen Hosp, Dept Plast & Reconstruct Surg, Beijing 100853, Peoples R China
[3] Chinese PLA, Sch Med, Beijing 100853, Peoples R China
[4] Beijing Inst Transfus Med, Stern Cell & Regenerat Med Lab, 27 Taiping Rd, Beijing 100850, Peoples R China
[5] Beijing Univ Technol, Life Sci & Bioengn Dept, Beijing 100124, Peoples R China
[6] Bethune Int Peace Hosp, Burn & Plast Surg, Shijiazhuang 050000, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Skin flap transplantation; lschemia-reperfusion injury; Adipose-derived stem cells; Exosomes; Hydrogen peroxide; Neovascularization; ANGIOGENESIS;
D O I
10.1016/j.bbrc.2018.04.065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of ischemic disease or injury and may be an alternative treatment for cell therapy. This aim of the study was to evaluate whether exosomes derived from adipose mesenchymal stem cell (ADSC) can protect the skin flap during ischemia-reperfusion (I/R) injury and induce neovascularization. Methods: To investigate the effects of exosomes in the I/R injury of flap transplantation in vivo, flaps were subjected to 6 h of ischemia by ligating the left superficial inferior epigastric vessels (SIEA) followed by blood perfusion. Exosomes derived from normal ADSC (ADSC-exos) and exosomes derived from ADSC preconditioned with H2O2 (H2O2-ADSC-exos) were injected into the flaps. Then, the blood perfusion unit (BPU) of the flaps was measured by Laser Doppler Perfusion Imaging (LDPI) and microvessel density was determined by the endothelial with cell marker CD31 with Immunohistochemistry (IHC) staining. Inflammatory cell infiltration of the skin flap and apoptosis were detected by hematoxylin & eosin staining (H&E) and the TdT-mediated biotinylated dUTP nick end-labeling (TUNEL) technique. Results: In vivo, exosomes significantly increased flap survival and capillary density compared to I/R on postoperative day 5, and decreased the inflammatory reaction and apoptosis in the skin flap (P < 0.05). Furthermore, H2O2-ADSC-exos had better outcomes compared to normal exosomes (P < 0.05). ADSC-exos could significantly increase human umbilical vein endothelial cell (HUVEC) proliferation (P < 0.05), but no statistic difference was found in exosomes derived from different microenvironments (P > 0.05). HUVEC co-cultured with H2O2-ADSC-exos increased the migration ratio and generated more cord-like structures compared to ADSC-exos and the control group (P < 0.05). Conclusion: ADSC-exos can enhance skin flap survival, promote neovascularization and alleviate the inflammation reaction and apoptosis in the skin flap after I/R injury. The use of a specific microenvironment for in vitro stem cell culture, such as one containing a low concentration of H2O2, will facilitate the development of customized exosomes for cell-free therapeutic applications in skin flap transplantation. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:310 / 317
页数:8
相关论文
共 50 条
  • [11] Canine mesenchymal stem cell-derived exosomes attenuate renal ischemia-reperfusion injury through miR-146a-regulated macrophage polarization
    Liu, HaiFeng
    Deng, Hongchuan
    Huang, Haocheng
    Cao, Jiahui
    Wang, Xinmiao
    Zhou, Ziyao
    Zhong, Zhijun
    Chen, Dechun
    Peng, Guangneng
    FRONTIERS IN VETERINARY SCIENCE, 2024, 11
  • [12] Effect of umbilical cord mesenchymal stem cell-derived mitochondrial transplantation on ischemia-reperfusion injury in a rat model
    Lee, Chan Yeong
    Khan, Galina
    Hyun, Dong Yun
    Kim, Sang Hun
    Park, Eun Soo
    SKIN RESEARCH AND TECHNOLOGY, 2024, 30 (09)
  • [13] miRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfusion injury
    Wei Zilun
    Qiao Shuaihua
    Zhao Jinxuan
    Liu Yihai
    Li Qiaoling
    Wei Zhonghai
    Dai Qing
    Kang Lina
    Xu Biao
    LIFE SCIENCES, 2019, 232
  • [14] Melatonin Treatment Improves Adipose-derived Mesenchymal Stem Cell Therapy for Acute Lung Ischemia-reperfusion Injury
    Chua, Sarah
    Tsai, Tzu-Hsien
    Sheu, Jiunn-Jye
    Yip, Hon-Kan
    CIRCULATION, 2013, 128 (22)
  • [15] Exosomes derived from PEDF modified adipose-derived mesenchymal stem cells ameliorate cerebral ischemia-reperfusion injury by regulation of autophagy and apoptosis
    Huang, Xiao
    Ding, Jing
    Li, Yufei
    Liu, Wenjuan
    Ji, Jianlin
    Wang, Hao
    Wang, Xin
    EXPERIMENTAL CELL RESEARCH, 2018, 371 (01) : 269 - 277
  • [16] Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia-reperfusion injury
    Lin, Kun-Chen
    Yip, Hon-Kan
    Shao, Pei-Lin
    Wu, Shun-Cheng
    Chen, Kuan-Hung
    Chen, Yen-Ta
    Yang, Chih-Chao
    Sun, Cheuk-Kwan
    Kao, Gour-Shenq
    Chen, Sheng-Yi
    Chai, Han-Tan
    Chang, Chia-Lo
    Chen, Chih-Hung
    Lee, Mel S.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2016, 216 : 173 - 185
  • [17] Combination of adipose-derived mesenchymal Stem Cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia-reperfusion injury
    Chua, S.
    Shao, P. L.
    Sung, P. H.
    Sheu, J. J.
    Leu, S.
    Wallace, C. G.
    Yip, H. K.
    EUROPEAN HEART JOURNAL, 2017, 38 : 539 - 539
  • [18] Neural progenitor cell-derived exosomes in ischemia/reperfusion injury in cardiomyoblasts
    Arvola, Oiva
    Stigzelius, Virpi
    Ampuja, Minna
    Kivela, Riikka
    BMC NEUROSCIENCE, 2025, 26 (01):
  • [19] Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Alleviate Ischemia-Reperfusion Injury and Promote Survival of Skin Flaps in Rats
    Niu, Qifang
    Yang, Yang
    Li, Delong
    Guo, Wenwen
    Wang, Chong
    Xu, Haoyue
    Feng, Zhien
    Han, Zhengxue
    LIFE-BASEL, 2022, 12 (10):
  • [20] Effects of adipose-derived mesenchymal cells on ischemia-reperfusion injury in kidney
    Furuichi, Kengo
    Shintani, Hidemi
    Sakai, Yoshio
    Ochiya, Takahiro
    Matsushima, Kouji
    Kaneko, Shuichi
    Wada, Takashi
    CLINICAL AND EXPERIMENTAL NEPHROLOGY, 2012, 16 (05) : 679 - 689