The Shatashvili-Vafa G2 superconformal algebra as a quantum Hamiltonian reduction of D(2, 1; α)

被引:0
|
作者
Heluani, Reimundo [1 ]
Rodriguez Diaz, Lazaro O. [1 ]
机构
[1] IMPA, Jardim Bot, BR-22460320 Rio De Janeiro, RJ, Brazil
来源
关键词
Shatashvili-Vafa G(2) superconformal algebra; quantum Hamiltonian reduction; W-algebras; free field realization;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain the superconformal algebra associated to a sigma model with target a manifold with G(2) holonomy, i.e., the Shatashvili-Vafa G(2) algebra as a quantum Hamiltonian reduction of the exceptional Lie superalgebra D(2, 1; alpha) for alpha = 1. We produce the complete family of W-algebras SW (3/2, 3/2, 2) (extensions of the N = 1 superconformal algebra by two primary supercurrents of conformal weight 3/2 and 2 respectively) as a quantum Hamiltonian reduction of D(2, 1; alpha). As a corollary we find a free field realization of the Shatashvili-Vafa G(2) algebra, and an explicit description of the screening operators.
引用
收藏
页码:331 / 351
页数:21
相关论文
共 50 条
  • [11] QUASI-SUPERCONFORMAL ALGEBRAS IN 2 DIMENSIONS AND HAMILTONIAN REDUCTION
    ROMANS, LJ
    NUCLEAR PHYSICS B, 1991, 357 (2-3) : 549 - 564
  • [12] SO(8) and G2 X G2 N=1 supergravities in D=6
    Holman, R
    Kephart, TW
    PHYSICS LETTERS B, 1999, 452 (3-4) : 251 - 254
  • [13] Unitary minimal models of SW(3/2;3/2,2) superconformal algebra and manifolds of G2 holonomy -: art. no. 030
    Noyvert, B
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (03):
  • [14] g2 Algebra and two-dimensional quasiexactly solvable Hamiltonian related to Poschl–Teller potential
    H PANAHI
    H RAHMATI
    Pramana, 2014, 83 : 3 - 8
  • [15] Graded Limits of Minimal Affinizations over the Quantum Loop Algebra of Type G2
    Jian-Rong Li
    Katsuyuki Naoi
    Algebras and Representation Theory, 2016, 19 : 957 - 973
  • [16] Graded Limits of Minimal Affinizations over the Quantum Loop Algebra of Type G2
    Li, Jian-Rong
    Naoi, Katsuyuki
    ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (04) : 957 - 973
  • [17] Exact solution of a quantum integrable system associated with the G2 exceptional Lie algebra
    Li, Guang-Liang
    Cao, Junpeng
    Sun, Pei
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    NUCLEAR PHYSICS B, 2025, 1010
  • [18] Two-parameter quantum affine algebra of type G2(1), Drinfeld realization and vertex representation
    Gao, Yun
    Hu, Naihong
    Zhang, Honglian
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [19] Deforming the lie superalgebra D(2, 1; α) inside the superconformal algebra K′(4)
    Poletaeva E.
    Journal of Mathematical Sciences, 2009, 161 (1) : 130 - 142
  • [20] Superconformal algebras for twisted connected sums and G2 mirror symmetry
    Marc-Antoine Fiset
    Journal of High Energy Physics, 2018