Exact solution of a quantum integrable system associated with the G2 exceptional Lie algebra

被引:0
|
作者
Li, Guang-Liang [1 ,2 ]
Cao, Junpeng [2 ,3 ,4 ,5 ]
Sun, Pei [2 ,6 ]
Yang, Wen-Li [2 ,6 ,7 ]
Shi, Kangjie [6 ]
Wang, Yupeng [3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, Minist Educ, Key Lab Nonequilibrium Synth & Modulat Condensed M, Xian 710049, Peoples R China
[2] Peng Huanwu Ctr Fundamental Theory, Xian 710127, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[5] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[6] Northwest Univ, Inst Modern Phys, Xian 710127, Peoples R China
[7] Shaanxi Key Lab Theoret Phys Frontiers, Xian 710127, Peoples R China
关键词
Bethe ansatz; Lattice integrable models; ANALYTICAL BETHE-ANSATZ; XXZ HEISENBERG-MODEL; N VERTEX MODEL; ARBITRARY SPIN; MATRICES; STATE;
D O I
10.1016/j.nuclphysb.2024.116777
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A quantum integrable spin chain model associated with the G2 exceptional Lie algebra is studied. By using the fusion technique, the closed recursive relations among the fused transfer matrices are obtained. These identities allow us to derive the exact energy spectrum and Bethe ansatz equations of the system based on polynomial analysis. The present method provides a unified treatment to investigate the Bethe ansatz solutions for both the periodic and the non-diagonal open boundary conditions associated with exceptional Lie algebras.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Indecomposable representations and oscillator realizations of the exceptional Lie algebra G2
    Hua-Jun Huang
    You-Ning Li
    Dong Ruan
    The European Physical Journal Plus, 128
  • [2] Indecomposable representations and oscillator realizations of the exceptional Lie algebra G2
    Huang, Hua-Jun
    Li, You-Ning
    Ruan, Dong
    EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (06):
  • [3] Intrinsic formulae for the Casimir operators of semidirect products of the exceptional Lie algebra G2 and a Heisenberg Lie algebra
    Campoamor-Stursberg, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (40): : 9451 - 9466
  • [4] Weight q-multiplicities for representations of the exceptional Lie algebra g2
    Cockerham, Jerrell
    Gonzalez, Melissa Gutierrez
    Harris, Pamela E.
    Loving, Marissa
    Minino, Amaury, V
    Rennie, Joseph
    Kirby, Gordon Rojas
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2020, 27 (05) : 641 - 662
  • [5] Integrable cocycles and global deformations of Lie algebra of type G2 in characteristic 2
    Chebochko, N. G.
    Kuznetsov, M. I.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) : 2969 - 2977
  • [6] Exact solution of the quantum integrable model associated with the twisted D3(2) algebra
    Li, Guang-Liang
    Xu, Xiaotian
    Hao, Kun
    Sun, Pei
    Cao, Junpeng
    Yang, Wen-Li
    Shi, Kang Jie
    Wang, Yupeng
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (03):
  • [7] The nullcone of the Lie algebra of G2
    Hesselink, Wim H.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (04): : 623 - 648
  • [8] Notes on G2: The Lie algebra and the Lie group
    Draper Fontanals, Cristina
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 57 : 23 - 74
  • [9] The Exceptional Lie Algebra g2 is Generated by Three Generators Subject to Quadruple Relations
    Stoilova, N. I.
    Van der Jeugt, J.
    JOURNAL OF LIE THEORY, 2023, 33 (04) : 1005 - 1008
  • [10] FRAMING EXCEPTIONAL LIE GROUP G2
    WOOD, RMW
    TOPOLOGY, 1976, 15 (04) : 303 - 320