H+-EIGENVALUES OF LAPLACIAN AND SIGNLESS LAPLACIAN TENSORS

被引:118
|
作者
Qi, Liqun [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词
Laplacian tensor; signless Laplacian tensor; uniform hypergraph; H+-eigenvalue; PERRON-FROBENIUS THEOREM; NONNEGATIVE TENSORS; CONVERGENCE; ALGORITHM;
D O I
10.4310/CMS.2014.v12.n6.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a simple and natural definition for the Laplacian and the signless Laplacian tensors of a uniform hypergraph. We study their H+-eigenvalues, i.e., H-eigenvalues with non-negative H-eigenvectors, and H++-eigenvalues, i.e., H-eigenvalues with positive H-eigenvectors. We show that each of the Laplacian tensor, the signless Laplacian tensor, and the adjacency tensor has at most one H++-eigenvalue, but has several other H+-eigenvalues. We identify their largest and smallest H+-eigenvalues, and establish some maximum and minimum properties of these H+-eigenvalues. We then define analytic connectivity of a uniform hypergraph and discuss its application in edge connectivity.
引用
收藏
页码:1045 / 1064
页数:20
相关论文
共 50 条
  • [31] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Xiaodan Chen
    Guoliang Hao
    Dequan Jin
    Jingjian Li
    Czechoslovak Mathematical Journal, 2018, 68 : 601 - 610
  • [32] Bounds on Signless Laplacian Eigenvalues of Hamiltonian Graphs
    Milica Anđelić
    Tamara Koledin
    Zoran Stanić
    Bulletin of the Brazilian Mathematical Society, New Series, 2021, 52 : 467 - 476
  • [33] Some Results on the Bounds of Signless Laplacian Eigenvalues
    Shuchao Li
    Yi Tian
    Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 131 - 141
  • [34] Bounds for the Largest Two Eigenvalues of the Signless Laplacian
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2014, 199 (4) : 448 - 455
  • [35] ON SUM OF POWERS OF THE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS
    Liu, Muhuo
    Liu, Bolian
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (04): : 527 - 536
  • [36] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Chen, Xiaodan
    Hao, Guoliang
    Jin, Dequan
    Li, Jingjian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (03) : 601 - 610
  • [37] Some Results on the Bounds of Signless Laplacian Eigenvalues
    Li, Shuchao
    Tian, Yi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (01) : 131 - 141
  • [38] Bounds on Signless Laplacian Eigenvalues of Hamiltonian Graphs
    Andelic, Milica
    Koledin, Tamara
    Stanic, Zoran
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (03): : 467 - 476
  • [39] Upper bounds on the (signless) Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Liu, Muhuo
    Shan, Haiying
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 334 - 341
  • [40] Distribution of signless Laplacian eigenvalues and graph invariants
    Xu, Leyou
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 698 : 589 - 602