H+-EIGENVALUES OF LAPLACIAN AND SIGNLESS LAPLACIAN TENSORS

被引:118
|
作者
Qi, Liqun [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词
Laplacian tensor; signless Laplacian tensor; uniform hypergraph; H+-eigenvalue; PERRON-FROBENIUS THEOREM; NONNEGATIVE TENSORS; CONVERGENCE; ALGORITHM;
D O I
10.4310/CMS.2014.v12.n6.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a simple and natural definition for the Laplacian and the signless Laplacian tensors of a uniform hypergraph. We study their H+-eigenvalues, i.e., H-eigenvalues with non-negative H-eigenvectors, and H++-eigenvalues, i.e., H-eigenvalues with positive H-eigenvectors. We show that each of the Laplacian tensor, the signless Laplacian tensor, and the adjacency tensor has at most one H++-eigenvalue, but has several other H+-eigenvalues. We identify their largest and smallest H+-eigenvalues, and establish some maximum and minimum properties of these H+-eigenvalues. We then define analytic connectivity of a uniform hypergraph and discuss its application in edge connectivity.
引用
收藏
页码:1045 / 1064
页数:20
相关论文
共 50 条
  • [21] On the sum of signless Laplacian eigenvalues of a graph
    Ashraf, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4539 - 4546
  • [22] Distance signless Laplacian eigenvalues of graphs
    Kinkar Chandra Das
    Huiqiu Lin
    Jiming Guo
    Frontiers of Mathematics in China, 2019, 14 : 693 - 713
  • [23] THE MAXIMUM CLIQUE AND THE SIGNLESS LAPLACIAN EIGENVALUES
    Liu, Jianping
    Liu, Bolian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 1233 - 1240
  • [24] Signless Laplacian eigenvalues and circumference of graphs
    Wang, JianFeng
    Belardo, Francesco
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1610 - 1617
  • [25] Distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Chandra
    Lin, Huiqiu
    Guo, Jiming
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 693 - 713
  • [26] A note on the signless Laplacian eigenvalues of graphs
    Wang, Jianfeng
    Belardo, Francesco
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2585 - 2590
  • [27] Some Properties of the Signless Laplacian and Normalized Laplacian Tensors of General Hypergraphs
    Duan, Cunxiang
    Wang, Ligong
    Li, Xihe
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (02): : 265 - 281
  • [28] Edge perturbation on graphs with clusters: Adjacency, Laplacian and signless Laplacian eigenvalues
    Cardoso, Domingos M.
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 512 : 113 - 128
  • [29] Nordhaus-Gaddum type inequalities for Laplacian and signless Laplacian eigenvalues
    Ashraf, F.
    Tayfeh-Rezaie, B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (03):
  • [30] On the sum of distance signless Laplacian eigenvalues of graphs
    Khan, Saleem
    Pirzada, S.
    Das, Kinkar Chandra
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025,