Fold singular points play important roles in the theory of maximal surfaces. For example, if a maximal surface admits fold singular points, it can be extended to a timelike minimal surface analytically. Moreover, there is a duality between conelike singular points and folds. In this paper, we investigate fold singular points on spacelike surfaces with non-zero constant mean curvature (spacelike CMC surfaces). We prove that spacelike CMC surfaces do not admit fold singular points. Moreover, we show that the singular point set of any conjugate CMC surface of a spacelike Delaunay surface with conelike singular points consists of (2, 5)-cuspidal edges.
机构:
Princess Nourah Bint Abdulrahman Univ, Fac Sci, Math Sci Dept, Riyadh 11546, Saudi ArabiaPrincess Nourah Bint Abdulrahman Univ, Fac Sci, Math Sci Dept, Riyadh 11546, Saudi Arabia
Mofarreh, Fatemah
Abdel-Baky, Rashad A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Assiut, Fac Sci, Dept Math, Assiut 71516, EgyptPrincess Nourah Bint Abdulrahman Univ, Fac Sci, Math Sci Dept, Riyadh 11546, Saudi Arabia
Abdel-Baky, Rashad A.
Alluhaibi, Nadia
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Sci & Arts Coll, Rabigh Campus, Jeddah, Saudi ArabiaPrincess Nourah Bint Abdulrahman Univ, Fac Sci, Math Sci Dept, Riyadh 11546, Saudi Arabia