Fold singularities on spacelike CMC surfaces in Lorentz-Minkowski space

被引:0
|
作者
Honda, Atsufumi [1 ,2 ]
Koiso, Miyuki [3 ]
Saji, Kentaro [4 ]
机构
[1] Miyakonojo Coll, Natl Inst Technol, Miyakonojo 8858567, Japan
[2] Yokohama Natl Univ, Fac Engn, Dept Appl Math, 79-5 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
[3] Kyushu Univ, Inst Math Ind, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[4] Kobe Univ, Fac Sci, Dept Math, Kobe, Hyogo 6578501, Japan
基金
日本学术振兴会;
关键词
Spacelike CMC surface; constant mean curvature; fold; (2,5)-cuspidal edge; MEAN-CURVATURE SURFACES; MAXIMAL SURFACES; MIXED-TYPE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fold singular points play important roles in the theory of maximal surfaces. For example, if a maximal surface admits fold singular points, it can be extended to a timelike minimal surface analytically. Moreover, there is a duality between conelike singular points and folds. In this paper, we investigate fold singular points on spacelike surfaces with non-zero constant mean curvature (spacelike CMC surfaces). We prove that spacelike CMC surfaces do not admit fold singular points. Moreover, we show that the singular point set of any conjugate CMC surface of a spacelike Delaunay surface with conelike singular points consists of (2, 5)-cuspidal edges.
引用
收藏
页码:245 / 267
页数:23
相关论文
共 50 条