Fold singularities on spacelike CMC surfaces in Lorentz-Minkowski space

被引:0
|
作者
Honda, Atsufumi [1 ,2 ]
Koiso, Miyuki [3 ]
Saji, Kentaro [4 ]
机构
[1] Miyakonojo Coll, Natl Inst Technol, Miyakonojo 8858567, Japan
[2] Yokohama Natl Univ, Fac Engn, Dept Appl Math, 79-5 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
[3] Kyushu Univ, Inst Math Ind, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[4] Kobe Univ, Fac Sci, Dept Math, Kobe, Hyogo 6578501, Japan
基金
日本学术振兴会;
关键词
Spacelike CMC surface; constant mean curvature; fold; (2,5)-cuspidal edge; MEAN-CURVATURE SURFACES; MAXIMAL SURFACES; MIXED-TYPE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fold singular points play important roles in the theory of maximal surfaces. For example, if a maximal surface admits fold singular points, it can be extended to a timelike minimal surface analytically. Moreover, there is a duality between conelike singular points and folds. In this paper, we investigate fold singular points on spacelike surfaces with non-zero constant mean curvature (spacelike CMC surfaces). We prove that spacelike CMC surfaces do not admit fold singular points. Moreover, we show that the singular point set of any conjugate CMC surface of a spacelike Delaunay surface with conelike singular points consists of (2, 5)-cuspidal edges.
引用
收藏
页码:245 / 267
页数:23
相关论文
共 50 条
  • [31] ON SURFACES IN THE 3-DIMENSIONAL LORENTZ-MINKOWSKI SPACE
    FERRANDEZ, A
    LUCAS, P
    PACIFIC JOURNAL OF MATHEMATICS, 1992, 152 (01) : 93 - 100
  • [32] Bjorling problem for maximal surfaces in Lorentz-Minkowski space
    Alías, LJ
    Chaves, RMB
    Mira, P
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 : 289 - 316
  • [33] DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE
    Lopez, Rafael
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2014, 7 (01): : 44 - 107
  • [34] Isometric Generalized Maximal Surfaces in Lorentz-Minkowski Space
    Araujo, Henrique
    RESULTS IN MATHEMATICS, 2009, 56 (1-4) : 83 - 90
  • [35] Spacelike Hypersurfaces in the Lorentz-Minkowski Space with the Same Riemannian and Lorentzian Mean Curvature
    Alarcon, Eva M.
    Albujer, Alma L.
    Caballero, Magdalena
    LORENTZIAN GEOMETRY AND RELATED TOPICS, GELOMA 2016, 2017, 211 : 1 - 12
  • [36] On the curvatures of timelike circular surfaces in Lorentz-Minkowski space
    Li, Jing
    Yang, Zhichao
    Li, Yanlin
    Abdel-Baky, R. A.
    Saad, M. Khalifa
    FILOMAT, 2024, 38 (04) : 1423 - 1437
  • [37] MINDING ISOMETRIES OF RULED SURFACES IN LORENTZ-MINKOWSKI SPACE
    Gajcic, Ljiljana Primorac
    Sipus, Zeljka Milin
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2019, 23 (538): : 107 - 122
  • [38] Constant mean curvature spacelike hypersurfaces with spherical boundary in the Lorentz-Minkowski space
    Alias, LJ
    Pastor, JA
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (1-2) : 85 - 93
  • [39] On complete spacelike hypersurfaces with two distinct principal curvatures in Lorentz-Minkowski space
    Wu, Bing Ye
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (01) : 43 - 52
  • [40] SPACELIKE HYPERSURFACES IN THE LORENTZ-MINKOWSKI SPACE SATISFYING Lrx = Rx plus b
    Yang, Biao-Gui
    Liu, Xi-Min
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2009, 40 (06): : 389 - 403