Accurate detection of myocardial infarction using non linear features with ECG signals

被引:38
|
作者
Sridhar, Chaitra [1 ]
Lih, Oh Shu [2 ]
Jahmunah, V. [2 ]
Koh, Joel E. W. [2 ]
Ciaccio, Edward J. [3 ]
San, Tan Ru [4 ]
Arunkumar, N. [5 ]
Kadry, Seifedine [6 ]
Rajendra Acharya, U. [2 ,7 ,8 ]
机构
[1] Schiller Healthcare India Private Ltd, Bangalore, Karnataka, India
[2] Ngee Ann Polytech, Sch Engn, Singapore 599489, Singapore
[3] Columbia Univ, Dept Med, Div Cardiol, New York, NY USA
[4] Natl Heart Ctr, Singapore, Singapore
[5] Rathinam Tech Campus, Biomed Engn Dept, Coimbatore, Tamil Nadu, India
[6] Beirut Arab Univ, Dept Math & Comp Sci, Beirut 115020, Lebanon
[7] Asia Univ, Dept Bioinformat & Med Engn, Taichung, Taiwan
[8] Kumamoto Univ, Int Res Org Adv Sci & Technol IROAST, Kumamoto, Japan
关键词
Myocardial infarction; Computer aided diagnostic system; Electrocardiogram; Pan Thompkins algorithm; Classifiers; COMPUTER-AIDED DIAGNOSIS; CORONARY-ARTERY-DISEASE; CONVOLUTIONAL NEURAL-NETWORK; AUTOMATED DETECTION; APPROXIMATE ENTROPY; CLASSIFICATION; DECOMPOSITION; QUANTIFICATION; IDENTIFICATION; LOCALIZATION;
D O I
10.1007/s12652-020-02536-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interrupted blood flow to regions of the heart causes damage to heart muscles, resulting in myocardial infarction (MI). MI is a major source of death worldwide. Accurate and timely detection of MI facilitates initiation of emergency revascularization in acute MI and early secondary prevention therapy in established MI. In both acute and ambulatory settings, the electrocardiogram (ECG) is a standard data type for diagnosis. ECG abnormalities associated with MI can be subtle, and may escape detection upon clinical reading. Experience and training are required to visually extract salient information present in the ECG signals. This process of characterization is manually intensive, and prone to intra-and inter-observer-variability. The clinical problem can be posed as one of diagnostic classification of MI versus no MI on the ECG, which is amenable to computational solutions. Computer Aided Diagnosis (CAD) systems are designed to be automated, rapid, efficient, and ultimately cost-effective systems that can be employed to detect ECG abnormalities associated with MI. In this work, ECGs from 200 subjects were analyzed (52 normal and 148 MI). The proposed methodology involves pre-processing of signals and subsequent detection of R peaks using the Pan-Tompkins algorithm. Nonlinear features were extracted. The extracted features were ranked based on Student's t-test and input to k-Nearest Neighbor (KNN), Support Vector Machine (SVM), Probabilistic Neural Network (PNN), and Decision Tree (DT) classifiers for distinguishing normal versus MI classes. This method yielded the highest accuracy 97.96%, sensitivity 98.89%, and specificity 93.80% using the SVM classifier.
引用
收藏
页码:3227 / 3244
页数:18
相关论文
共 50 条
  • [31] Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals
    Jahmunah, V.
    Ng, E. Y. K.
    San, Tan Ru
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [32] Modeling ECG Signals with regard to the Location and Intensity of Myocardial Infarction
    Attarodi, Gholamreza
    Dabanloo, Nader Jafarnia
    Mahdinazar, Samaneh
    Nasrabadi, Ali M.
    Javadirad, Ali
    2012 COMPUTING IN CARDIOLOGY (CINC), VOL 39, 2012, 39 : 965 - 968
  • [33] Automated accurate insomnia detection system using wavelet scattering method using ECG signals
    Nishant Sharma
    Manish Sharma
    Hardik Telangore
    U Rajendra Acharya
    Applied Intelligence, 2024, 54 : 3464 - 3481
  • [34] Automated accurate insomnia detection system using wavelet scattering method using ECG signals
    Sharma, Nishant
    Sharma, Manish
    Telangore, Hardik
    Acharya, U. Rajendra
    APPLIED INTELLIGENCE, 2024, 54 (04) : 3464 - 3481
  • [35] A Lightweight Method of Myocardial Infarction Detection and Localization From Single Lead ECG Features Using Machine Learning Approach
    Anwar, Sk. Md. Shafique
    Pal, Debasmita
    Mukhopadhyay, Sumitra
    Gupta, Rajarshi
    IEEE SENSORS LETTERS, 2024, 8 (04) : 1 - 4
  • [36] A Review of Methods for Myocardial Infarction Detection Using of Electrocardiographic Features
    Fitri, Dewi Cahya
    Nuryani, Nuryani
    Nugraha, Anton Satriyo
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2019, 2019, 2202
  • [37] A system for accurately predicting the risk of myocardial infarction using PCG, ECG and clinical features
    Zarrabi M.
    Parsaei H.
    Boostani R.
    Zare A.
    Dorfeshan Z.
    Zarrabi K.
    Kojuri J.
    Parsaei, Hossien (hparsaei@sums.ac.ir), 1600, World Scientific (29):
  • [38] Detection of myocardial infarction in 12 lead ECG using support vector machine
    Dohare, Ashok Kumar
    Kumar, Vinod
    Kumar, Ritesh
    APPLIED SOFT COMPUTING, 2018, 64 : 138 - 147
  • [39] Detection of Myocardial Infarction Using ECG and Multi-Scale Feature Concatenate
    Jian, Jia-Zheng
    Ger, Tzong-Rong
    Lai, Han-Hua
    Ku, Chi-Ming
    Chen, Chiung-An
    Abu, Patricia Angela R.
    Chen, Shih-Lun
    SENSORS, 2021, 21 (05) : 1 - 17
  • [40] Automated Detection of Posterior Myocardial Infarction From VCG Signals Using Stationary Wavelet Transform Based Features
    Prabhakararao, Eedara
    Dandapat, Samarendra
    IEEE SENSORS LETTERS, 2020, 4 (06)