Accurate detection of myocardial infarction using non linear features with ECG signals

被引:38
|
作者
Sridhar, Chaitra [1 ]
Lih, Oh Shu [2 ]
Jahmunah, V. [2 ]
Koh, Joel E. W. [2 ]
Ciaccio, Edward J. [3 ]
San, Tan Ru [4 ]
Arunkumar, N. [5 ]
Kadry, Seifedine [6 ]
Rajendra Acharya, U. [2 ,7 ,8 ]
机构
[1] Schiller Healthcare India Private Ltd, Bangalore, Karnataka, India
[2] Ngee Ann Polytech, Sch Engn, Singapore 599489, Singapore
[3] Columbia Univ, Dept Med, Div Cardiol, New York, NY USA
[4] Natl Heart Ctr, Singapore, Singapore
[5] Rathinam Tech Campus, Biomed Engn Dept, Coimbatore, Tamil Nadu, India
[6] Beirut Arab Univ, Dept Math & Comp Sci, Beirut 115020, Lebanon
[7] Asia Univ, Dept Bioinformat & Med Engn, Taichung, Taiwan
[8] Kumamoto Univ, Int Res Org Adv Sci & Technol IROAST, Kumamoto, Japan
关键词
Myocardial infarction; Computer aided diagnostic system; Electrocardiogram; Pan Thompkins algorithm; Classifiers; COMPUTER-AIDED DIAGNOSIS; CORONARY-ARTERY-DISEASE; CONVOLUTIONAL NEURAL-NETWORK; AUTOMATED DETECTION; APPROXIMATE ENTROPY; CLASSIFICATION; DECOMPOSITION; QUANTIFICATION; IDENTIFICATION; LOCALIZATION;
D O I
10.1007/s12652-020-02536-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interrupted blood flow to regions of the heart causes damage to heart muscles, resulting in myocardial infarction (MI). MI is a major source of death worldwide. Accurate and timely detection of MI facilitates initiation of emergency revascularization in acute MI and early secondary prevention therapy in established MI. In both acute and ambulatory settings, the electrocardiogram (ECG) is a standard data type for diagnosis. ECG abnormalities associated with MI can be subtle, and may escape detection upon clinical reading. Experience and training are required to visually extract salient information present in the ECG signals. This process of characterization is manually intensive, and prone to intra-and inter-observer-variability. The clinical problem can be posed as one of diagnostic classification of MI versus no MI on the ECG, which is amenable to computational solutions. Computer Aided Diagnosis (CAD) systems are designed to be automated, rapid, efficient, and ultimately cost-effective systems that can be employed to detect ECG abnormalities associated with MI. In this work, ECGs from 200 subjects were analyzed (52 normal and 148 MI). The proposed methodology involves pre-processing of signals and subsequent detection of R peaks using the Pan-Tompkins algorithm. Nonlinear features were extracted. The extracted features were ranked based on Student's t-test and input to k-Nearest Neighbor (KNN), Support Vector Machine (SVM), Probabilistic Neural Network (PNN), and Decision Tree (DT) classifiers for distinguishing normal versus MI classes. This method yielded the highest accuracy 97.96%, sensitivity 98.89%, and specificity 93.80% using the SVM classifier.
引用
收藏
页码:3227 / 3244
页数:18
相关论文
共 50 条
  • [11] Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
    Acharya, U. Rajendra
    Fujita, Hamido
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adam, Muhammad
    INFORMATION SCIENCES, 2017, 415 : 190 - 198
  • [12] Uncertainty quantification in DenseNet model using myocardial infarction ECG signals
    Jahmunah, V.
    Ng, E. Y. K.
    Tan, Ru-San
    Oh, Shu Lih
    Acharya, U. Rajendra
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 229
  • [13] A Novel Approach for Detection of Myocardial Infarction From ECG Signals of Multiple Electrodes
    Tripathy, Rajesh Kumar
    Bhattacharyya, Abhijit
    Pachori, Ram Bilas
    IEEE SENSORS JOURNAL, 2019, 19 (12) : 4509 - 4517
  • [14] Variation of ECG Features on Torso Plane: An Innovative Approach to Myocardial Infarction Detection
    Sadabadi, H.
    Jalali, A.
    Ghasemi, M.
    Ghorbanian, P.
    Atarod, M.
    Golbayani, H.
    Ghaffari, A.
    COMPUTERS IN CARDIOLOGY 2007, VOL 34, 2007, 34 : 629 - +
  • [15] Automated detection of myocardial infarction using robust features extracted from 12-lead ECG
    Lin, Zhuochen
    Gao, Yongxiang
    Chen, Yimin
    Ge, Qi
    Mahara, Gehendra
    Zhang, Jinxin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (05) : 857 - 865
  • [16] Detection of PVC in ECG signals using fractional linear prediction
    Talbi, Mohamed Lamine
    Ravier, Philippe
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2016, 23 : 42 - 51
  • [17] Automated detection of myocardial infarction using robust features extracted from 12-lead ECG
    Zhuochen Lin
    Yongxiang Gao
    Yimin Chen
    Qi Ge
    Gehendra Mahara
    Jinxin Zhang
    Signal, Image and Video Processing, 2020, 14 : 857 - 865
  • [18] Fully Digital Pacemaker Detection in ECG Signals Using a Non-Linear Filtering Approach
    Polpetta, A.
    Banelli, P.
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 5406 - 5410
  • [19] An Overview of Algorithms for Myocardial Infarction Diagnostics Using ECG Signals: Advances and Challenges
    Han, Chuang
    Zhou, Yusen
    Que, Wenge
    Li, Zuhe
    Shi, Li
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [20] Decision Support System for Predicting Ventricular Arrhythmias Using Non-linear Features of ECG Signals
    Mohanty M.
    Dash P.
    Sabut S.
    SN Computer Science, 5 (4)