Geometric quantum computation and dynamical invariant operators

被引:100
|
作者
Wang, Z. S. [1 ]
机构
[1] Jiangxi Normal Univ, Coll Phys & Commun Elect, Nanchang 330022, Peoples R China
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 02期
关键词
geometry; Jaynes-Cummings model; mathematical operators; quantum entanglement; quantum gates; PHASE;
D O I
10.1103/PhysRevA.79.024304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An entangling quantum gate based entirely on purely geometric operations is proposed in quantum computation for the Jaynes-Cummings model by the invariant theory, where the qubits include information about the states of photons. By controlling some arbitrary parameters in the invariant operators, the phase accumulated in the quantum gate is a pure geometric phase. This way may be extended to other physical systems.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Smoothing techniques and computation of invariant subspaces of elliptic operators
    Godunov, SK
    Sadkane, M
    Robbé, M
    APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) : 341 - 347
  • [32] Implementing unitary operators in quantum computation
    Kim, J
    Lee, JS
    Lee, S
    PHYSICAL REVIEW A, 2000, 61 (03) : 4
  • [33] Implementing unitary operators in quantum computation
    Kim, Jaehyun
    Lee, Jae-Seung
    Lee, Soonchil
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (03): : 323121 - 323124
  • [34] Quantum computation in silicon-vacancy centers based on nonadiabatic geometric gates protected by dynamical decoupling
    Yun, M. R.
    Wu, Jin-Lei
    Yan, L. L.
    Jia, Yu
    Su, Shi-Lei
    Shan, C. X.
    PHYSICAL REVIEW APPLIED, 2024, 21 (06):
  • [35] INVARIANT, NON-INVARIANT OPERATORS AND QUANTUM FLUCTUATIONS IN TUNNELING
    NASSAR, AB
    PHYSICS LETTERS A, 1988, 129 (5-6) : 259 - 262
  • [36] On the Generators of Quantum Dynamical Semigroups with Invariant Subalgebras
    Hasenoehrl, Markus
    Caro, Matthias C.
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2023, 30 (01):
  • [37] Dynamical topological invariant after a quantum quench
    Yang, Chao
    Li, Linhu
    Chen, Shu
    PHYSICAL REVIEW B, 2018, 97 (06)
  • [38] Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering
    Kang, Yi-Hao
    Chen, Ye-Hong
    Wang, Xin
    Song, Jie
    Xia, Yan
    Miranowicz, Adam
    Zheng, Shi-Biao
    Nori, Franco
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [39] Quivers, geometric invariant theory, and moduli of linear dynamical systems
    Bader, Markus
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) : 2424 - 2454
  • [40] Nonadiabatic geometric quantum computation of W-state codes using invariant-based reverse engineering
    Wang, Sheng
    Ni, Wen-Shu
    Chen, Ze-Wen
    Feng, Bao
    Ning, Yu
    Kang, Yi-Hao
    Xia, Yan
    LASER PHYSICS LETTERS, 2023, 20 (01)