Geometric quantum computation and dynamical invariant operators

被引:100
|
作者
Wang, Z. S. [1 ]
机构
[1] Jiangxi Normal Univ, Coll Phys & Commun Elect, Nanchang 330022, Peoples R China
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 02期
关键词
geometry; Jaynes-Cummings model; mathematical operators; quantum entanglement; quantum gates; PHASE;
D O I
10.1103/PhysRevA.79.024304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An entangling quantum gate based entirely on purely geometric operations is proposed in quantum computation for the Jaynes-Cummings model by the invariant theory, where the qubits include information about the states of photons. By controlling some arbitrary parameters in the invariant operators, the phase accumulated in the quantum gate is a pure geometric phase. This way may be extended to other physical systems.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] GEOMETRIC PHASES AND TOPOLOGICAL QUANTUM COMPUTATION
    Vedral, Vlatko
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (01) : 1 - 23
  • [22] Conceptual aspects of geometric quantum computation
    Sjoqvist, Erik
    Mousolou, Vahid Azimi
    Canali, Carlo M.
    QUANTUM INFORMATION PROCESSING, 2016, 15 (10) : 3995 - 4011
  • [23] Geometric quantum computation with Josephson qubits
    Falci, G
    Fazio, R
    Palma, GM
    Siewert, J
    Vedral, V
    PHYSICA C, 2001, 352 (1-4): : 110 - 112
  • [24] Computation in Sofic Quantum Dynamical Systems
    Wiesner, Karoline
    Crutchfield, James P.
    NATURAL COMPUTING, 2010, 9 (02) : 317 - 327
  • [25] Geometric Quantum Computation with Shortcuts to Adiabaticity
    Du, Yanxiong
    Liang, Zhentao
    Yan, Hui
    Zhu, Shiliang
    ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (09)
  • [26] Computation in Sofic Quantum Dynamical Systems
    Karoline Wiesner
    James P. Crutchfield
    Natural Computing, 2010, 9 : 317 - 327
  • [27] Computation in sofic quantum dynamical systems
    Wiesner, Karoline
    Crutchfield, James P.
    UNCONVENTIONAL COMPUTATION, PROCEEDINGS, 2007, 4618 : 214 - +
  • [28] Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations
    Guysinsky, M
    Katok, A
    MATHEMATICAL RESEARCH LETTERS, 1998, 5 (1-2) : 149 - 163
  • [29] Equivariant Dirac operators and differentiable geometric invariant theory
    Paradan, Paul-Emile
    Vergne, Michele
    ACTA MATHEMATICA, 2017, 218 (01) : 137 - 199
  • [30] ATOMIC OPERATORS, RANDOM DYNAMICAL SYSTEMS AND INVARIANT MEASURES
    Ponosov, A.
    Stepanov, E.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2015, 26 (04) : 607 - 642