Geometric quantum computation and dynamical invariant operators

被引:100
|
作者
Wang, Z. S. [1 ]
机构
[1] Jiangxi Normal Univ, Coll Phys & Commun Elect, Nanchang 330022, Peoples R China
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 02期
关键词
geometry; Jaynes-Cummings model; mathematical operators; quantum entanglement; quantum gates; PHASE;
D O I
10.1103/PhysRevA.79.024304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An entangling quantum gate based entirely on purely geometric operations is proposed in quantum computation for the Jaynes-Cummings model by the invariant theory, where the qubits include information about the states of photons. By controlling some arbitrary parameters in the invariant operators, the phase accumulated in the quantum gate is a pure geometric phase. This way may be extended to other physical systems.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Dynamical-corrected nonadiabatic geometric quantum computation
    ChengYun Ding
    Li Chen
    LiHua Zhang
    ZhengYuan Xue
    Frontiers of Physics, 2023, 18 (06) : 254 - 264
  • [2] Robust nonadiabatic geometric quantum computation by dynamical correction
    Liang, Ming-Jie
    Xue, Zheng-Yuan
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [3] Dynamical-corrected nonadiabatic geometric quantum computation
    Ding, Cheng-Yun
    Chen, Li
    Zhang, Li-Hua
    Xue, Zheng-Yuan
    FRONTIERS OF PHYSICS, 2023, 18 (06)
  • [4] Dynamical-decoupling-protected unconventional nonadiabatic geometric quantum computation
    Wu, Xuan
    Jin, Long-Yi
    Wang, Hong-Fu
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [5] Invariant-based inverse engineering for fast nonadiabatic geometric quantum computation
    Li, Wei
    NEW JOURNAL OF PHYSICS, 2021, 23 (07):
  • [6] Geometric quantum computation
    Ekert, A
    Ericsson, M
    Hayden, P
    Inamori, H
    Jones, JA
    Oi, DKL
    Vedral, V
    JOURNAL OF MODERN OPTICS, 2000, 47 (14-15) : 2501 - 2513
  • [7] Geometric quantum computation
    Ekert, Artur
    Ericsson, Marie
    Hayden, Patrick
    Inamori, Hitoshi
    Jones, Jonathan A.
    Oi, Daniel K.L.
    Vedral, Vlatko
    2000, Taylor and Francis Ltd. (47) : 14 - 15
  • [8] Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian
    Wu, X.
    Zhao, P. Z.
    FRONTIERS OF PHYSICS, 2022, 17 (03)
  • [9] Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian
    X. Wu
    P. Z. Zhao
    Frontiers of Physics, 2022, 17
  • [10] Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian
    X.Wu
    P.Z.Zhao
    Frontiers of Physics, 2022, 17 (03) : 107 - 115