A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting

被引:35
|
作者
Zhang, Fan [1 ,2 ]
Fleyeh, Hasan [3 ]
Bales, Chris [2 ]
机构
[1] Dalarna Univ, Dept Microdata Anal, S-79188 Falun, Sweden
[2] Dalarna Univ, Dept Energy Technol, Falun, Sweden
[3] Dalarna Univ, Dept Comp Engn, Falun, Sweden
关键词
Bidirectional long short-term memory neural network; deep learning; electricity price forecasting; machine learning; boosting algorithms; energy market; LSTM; MARKET;
D O I
10.1080/01605682.2020.1843976
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Electricity price forecasting plays a crucial role in a liberalised electricity market. Generally speaking, long-term electricity price is widely utilised for investment profitability analysis, grid or transmission expansion planning, while medium-term forecasting is important to markets that involve medium-term contracts. Typical applications of medium-term forecasting are risk management, balance sheet calculation, derivative pricing, and bilateral contracting. Short-term electricity price forecasting is essential for market providers to adjust the schedule of production, i.e., balancing consumers' demands and electricity generation. Results from short-term forecasting are utilised by market players to decide the timing of purchasing or selling to maximise profits. Among existing forecasting approaches, neural networks are regarded as the state of art method due to their capability of modelling high non-linearity and complex patterns inside time series data. However, deep neural networks are not studied comprehensively in this field, which represents a good motivation to fill this research gap. In this article, a deep neural network-based hybrid approach is proposed for short-term electricity price forecasting. To be more specific, categorical boosting (Catboost) algorithm is used for feature selection and a bidirectional long short-term memory neural network (BDLSTM) will serve as the main forecasting engine in the proposed method. To evaluate the effectiveness of the proposed approach, 2018 hourly electricity price data from the Nord Pool market are invoked as a case study. Moreover, the performance of the proposed approach is compared with those of multi-layer perception (MLP) neural network, support vector regression (SVR), ensemble tree, ARIMA as well as two recent deep learning-based models, gated recurrent units (GRU) and LSTM models. A real-world dataset of Nord Pool market is used in this study to validate the proposed approach. Mean percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) are used to measure the model performance. Experiment results show that the proposed model achieves lower forecasting errors than other models considered in this study although the proposed model is more time consuming in terms of training and forecasting.
引用
收藏
页码:301 / 325
页数:25
相关论文
共 50 条
  • [31] An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting
    Liu, Jinyuan
    Wang, Shouxi
    Wei, Nan
    Yang, Yi
    Lv, Yihao
    Wang, Xu
    Zeng, Fanhua
    ENERGIES, 2023, 16 (03)
  • [32] Short-term electricity price forecasting based on price subsequences
    State Grid Corporation of China, Beijing 100031, China
    不详
    Dianli Xitong Zidonghue, 2007, 3 (4-8):
  • [33] Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow
    Chen, Quanchao
    Wen, Di
    Li, Xuqiang
    Chen, Dingjun
    Lv, Hongxia
    Zhang, Jie
    Gao, Peng
    PLOS ONE, 2019, 14 (09):
  • [34] Deep long short-term memory based model for agricultural price forecasting
    Jaiswal, Ronit
    Jha, Girish K.
    Kumar, Rajeev Ranjan
    Choudhary, Kapil
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (06): : 4661 - 4676
  • [35] Deep long short-term memory based model for agricultural price forecasting
    Ronit Jaiswal
    Girish K. Jha
    Rajeev Ranjan Kumar
    Kapil Choudhary
    Neural Computing and Applications, 2022, 34 : 4661 - 4676
  • [36] Improved long short-term memory network based short term load forecasting
    Cui, Jie
    Gao, Qiang
    Li, Dahua
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4428 - 4433
  • [37] Short-Term Load Forecasting Method Based on Bidirectional Long Short-Term Memory Model with Stochastic Weight Averaging Algorithm
    Zhu, Qingyun
    Zeng, Shunqi
    Chen, Minghui
    Wang, Fei
    Zhang, Zhen
    ELECTRONICS, 2024, 13 (15)
  • [38] Hybrid neural network model for short-term load forecasting
    Yin, Chengqun
    Kang, Lifeng
    Sun, Wei
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, : 408 - +
  • [39] Refining Short-Term Power Load Forecasting: An Optimized Model with Long Short-Term Memory Network
    Hu S.
    Cai W.
    Liu J.
    Shi H.
    Yu J.
    Journal of Computing and Information Technology, 2023, 31 (03) : 151 - 166
  • [40] A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network
    Tian, Chujie
    Ma, Jian
    Zhang, Chunhong
    Zhan, Panpan
    ENERGIES, 2018, 11 (12)