CHEBYSHEV-GRUSS TYPE INEQUALITIES ON TIME SCALES VIA TWO LINEAR ISOTONIC FUNCTIONALS

被引:4
|
作者
Nikolova, Ludmila [1 ]
Varosanec, Sanja [2 ]
机构
[1] Univ Sofia, Dept Math & Informat, Sofia, Bulgaria
[2] Univ Zagreb, Dept Math, Zagreb, Croatia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2016年 / 19卷 / 04期
关键词
The Chebyshev-Gruss inequality; fractional integral operator; isotonic linear functional; time scale; INTEGRAL-INEQUALITIES;
D O I
10.7153/mia-19-105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a generalization of the Chebyshev-Gruss inequality by using the concept of derivative on time scales combined with application of the Chebyshev inequality involving two linear isotonic functionals. This approach covers integral case, discrete case, results from fractional and quantum calculus.
引用
收藏
页码:1417 / 1427
页数:11
相关论文
共 50 条
  • [41] Opial-Type Inequalities with Two Unknowns and Two Functions on Time Scales
    Rabie S.S.
    Saker S.H.
    O’Regan D.
    Agarwal R.P.
    Vietnam Journal of Mathematics, 2016, 44 (3) : 541 - 555
  • [42] NEWOSTROWSKI AND OSTROWSKI- GRUSS TYPE INEQUALITIES FOR DOUBLE INTEGRALS ON TIME SCALES INVOLVING A COMBINATION OF Delta-INTEGRALMEANS
    Kermausuor, Seth
    Nwaeze, Eze Raymond
    TAMKANG JOURNAL OF MATHEMATICS, 2018, 49 (04): : 277 - 289
  • [43] Generalizations of Shannon type inequalities via diamond integrals on time scales
    Bilal, Muhammad
    Khan, Khuram Ali
    Nosheen, Ammara
    Pecaric, Josip
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [44] Generalizations of Shannon type inequalities via diamond integrals on time scales
    Muhammad Bilal
    Khuram Ali Khan
    Ammara Nosheen
    Josip Pečarić
    Journal of Inequalities and Applications, 2023
  • [45] MULTIVARIATE HARDY-TYPE INEQUALITIES ON TIME SCALES VIA SUPERQUADRACITY
    Fabelurin, O. O.
    Oguntuase, J. A.
    PROCEEDINGS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2015, 167 : 29 - 42
  • [46] A Parameter-Based Ostrowski-Gruss Type Inequalities with Multiple Points for Derivatives Bounded by Functions on Time Scales
    Kermausuor, Seth
    Nwaeze, Eze R.
    MATHEMATICS, 2018, 6 (12):
  • [47] OSTROWSKI-GRUSS TYPE INEQUALITIES AND A 2D OSTROWSKI TYPE INEQUALITY ON TIME SCALES INVOLVING A COMBINATION OF Δ-INTEGRAL MEANS
    Kermausuor, Seth
    Nwaeze, Eze R.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (01): : 127 - 143
  • [48] Landau type inequalities on time scales
    Anastassiou, George A.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (06) : 1130 - 1138
  • [49] HARDY TYPE INEQUALITIES ON TIME SCALES
    Oguntuase, James A.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 219 - 226
  • [50] Ostrowski Type Inequalities on Time Scales
    Dinu, Cristian
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2007, 34 : 43 - 58