CHEBYSHEV-GRUSS TYPE INEQUALITIES ON TIME SCALES VIA TWO LINEAR ISOTONIC FUNCTIONALS

被引:4
|
作者
Nikolova, Ludmila [1 ]
Varosanec, Sanja [2 ]
机构
[1] Univ Sofia, Dept Math & Informat, Sofia, Bulgaria
[2] Univ Zagreb, Dept Math, Zagreb, Croatia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2016年 / 19卷 / 04期
关键词
The Chebyshev-Gruss inequality; fractional integral operator; isotonic linear functional; time scale; INTEGRAL-INEQUALITIES;
D O I
10.7153/mia-19-105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a generalization of the Chebyshev-Gruss inequality by using the concept of derivative on time scales combined with application of the Chebyshev inequality involving two linear isotonic functionals. This approach covers integral case, discrete case, results from fractional and quantum calculus.
引用
收藏
页码:1417 / 1427
页数:11
相关论文
共 50 条
  • [31] Gruss type inequalities via generalized fractional operators
    Butt, Saad Ihsan
    Akdemir, Ahmet Ocak
    Nadeem, Muhammad
    Raza, Malik Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) : 12559 - 12574
  • [32] Shannon type inequalities via time scales theory
    Ansari, Iqrar
    Khan, Khuram Ali
    Nosheen, Ammara
    Pecaric, Dilda
    Pecaric, Josip
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [33] Shannon type inequalities via time scales theory
    Iqrar Ansari
    Khuram Ali Khan
    Ammara Nosheen
    Ðilda Pečarić
    Josip Pečarić
    Advances in Difference Equations, 2020
  • [34] An Ostrowski-Gruss type inequality on time scales
    Liu, Wenjun
    Ngo, Quoc-Anh
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) : 1207 - 1210
  • [35] Gruss type inequalities for positive linear maps on C*-algebras
    Dadkhah, Ali
    Moslehian, Mohammad Sal
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (07): : 1386 - 1401
  • [36] A new improvement of Holder inequality via isotonic linear functionals
    Iscan, Imdat
    AIMS MATHEMATICS, 2020, 5 (03): : 1720 - +
  • [37] TWO NEW SHARP OSTROWSKI-GRUSS TYPE INEQUALITIES
    Liu, Zheng
    MATEMATICHE, 2013, 68 (02): : 3 - 14
  • [38] WENDROFF TYPE INEQUALITIES ON TIME SCALES VIA PICARD OPERATORS
    Andras, Szilard
    Meszaros, Alpar
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (01): : 159 - 174
  • [39] TIME SCALES HARDY-TYPE INEQUALITIES VIA SUPERQUADRACITY
    Oguntuase, James Adedayo
    Persson, Lars-Erik
    ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (02): : 61 - 73
  • [40] MINKOWSKI AND BECKENBACH-DRESHER INEQUALITIES AND FUNCTIONALS ON TIME SCALES
    Bibi, Rabia
    Bohner, Martin
    Pecaric, Josip
    Varosanec, Sanja
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (03): : 299 - 312