HOMFLY-PT and Alexander polynomials from a doubled Schur algebra

被引:2
|
作者
Queffelec, Hoel [1 ]
Sartori, Antonio [2 ]
机构
[1] Univ Montpellier, CNRS, IMAG, Montpellier, France
[2] Albert Ludwigs Univ Freiburg, Math Inst, Eckerstr 1, D-79104 Freiburg, Germany
关键词
Schur algebras; knot invariants; Alexander polynomial; HOMFLY-PT polynomial; Reshetikhin-Turaev invariants;
D O I
10.4171/QT/109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a generalization of the Schur algebra which gives a unified setting for a quantum group presentation of the HOMFLY-PT polynomial, together with its specializations to the Alexander polynomial and to the sl(m) Reshetikhin-Turaev invariant.
引用
收藏
页码:323 / 347
页数:25
相关论文
共 50 条
  • [21] HOMFLY-PT SKEIN MODULE OF SINGULAR LINKS IN THE THREE-SPHERE
    Paris, Luis
    Wagner, Emmanuel
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2013, 22 (02)
  • [22] HOMFLY-PT polynomial and normal rulings of Legendrian solid torus links
    Rutherford, Dan
    QUANTUM TOPOLOGY, 2011, 2 (02) : 183 - 215
  • [23] Harer-Zagier transform of the HOMFLY-PT polynomial for families of twisted hyperbolic knots
    Petrou, Andreani
    Hikami, Shinobu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (20)
  • [24] ON THE S1 x S2 HOMFLY-PT INVARIANT AND LEGENDRIAN LINKS
    Lavrov, Mikhail
    Rutherford, Dan
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2013, 22 (08)
  • [25] Colored HOMFLY-PT for hybrid weaving knot W<mml:mo stretchy="true"></mml:mover>3(m<it>,</it> n)
    Singh, Vivek Kumar
    Mishra, Rama
    Ramadevi, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, (06):
  • [26] COLORED HOMFLY POLYNOMIALS FROM CHERN-SIMONS THEORY
    Nawata, Satoshi
    Ramadevi, P.
    Zodinmawia
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2013, 22 (13)
  • [27] A Note on Colored HOMFLY Polynomials for Hyperbolic Knots from WZW Models
    Gu, Jie
    Jockers, Hans
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (01) : 393 - 456
  • [28] A Note on Colored HOMFLY Polynomials for Hyperbolic Knots from WZW Models
    Jie Gu
    Hans Jockers
    Communications in Mathematical Physics, 2015, 338 : 393 - 456
  • [29] Lattice polytopes from Schur and symmetric Grothendieck polynomials
    Bayer, Margaret
    Goeckner, Bennet
    Hong, Su Ji
    McAllister, Tyrrell
    Olsen, McCabe
    Pinckney, Casey
    Vega, Julianne
    Yip, Martha
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [30] Implications for colored HOMFLY polynomials from explicit formulas for group-theoretical structure
    Lanina, E.
    Sleptsov, A.
    Tselousov, N.
    NUCLEAR PHYSICS B, 2022, 974