HOMFLY-PT and Alexander polynomials from a doubled Schur algebra

被引:2
|
作者
Queffelec, Hoel [1 ]
Sartori, Antonio [2 ]
机构
[1] Univ Montpellier, CNRS, IMAG, Montpellier, France
[2] Albert Ludwigs Univ Freiburg, Math Inst, Eckerstr 1, D-79104 Freiburg, Germany
关键词
Schur algebras; knot invariants; Alexander polynomial; HOMFLY-PT polynomial; Reshetikhin-Turaev invariants;
D O I
10.4171/QT/109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a generalization of the Schur algebra which gives a unified setting for a quantum group presentation of the HOMFLY-PT polynomial, together with its specializations to the Alexander polynomial and to the sl(m) Reshetikhin-Turaev invariant.
引用
收藏
页码:323 / 347
页数:25
相关论文
共 50 条
  • [11] New structures for colored HOMFLY-PT invariants
    Zhu, Shengmao
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (02) : 341 - 392
  • [12] A Homfly-pt polynomial of links in a solid torus
    Kim, JP
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1999, 8 (06) : 709 - 720
  • [13] Exponential growth of colored HOMFLY-PT homology
    Wedrich, Paul
    ADVANCES IN MATHEMATICS, 2019, 353 : 471 - 525
  • [14] New structures for colored HOMFLY-PT invariants
    Shengmao Zhu
    Science China Mathematics, 2023, 66 : 341 - 392
  • [15] Congruence Skein Relations for Colored HOMFLY-PT Invariants
    Chen, Qingtao
    Liu, Kefeng
    Peng, Pan
    Zhu, Shengmao
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 400 (02) : 683 - 729
  • [16] THE 1,2-COLOURED HOMFLY-PT LINK HOMOLOGY
    Mackaay, Marco
    Stosic, Marko
    Vaz, Pedro
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (04) : 2091 - 2124
  • [17] Cyclotomic expansions of HOMFLY-PT colored by rectangular Young diagrams
    Kameyama, Masaya
    Nawata, Satoshi
    Tao, Runkai
    Zhang, Hao Derrick
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (10) : 2573 - 2583
  • [18] HOMFLY-PT homology for general link diagrams and braidlike isotopy
    Abel, Michael
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (05): : 3021 - 3056
  • [19] Cyclotomic expansions of HOMFLY-PT colored by rectangular Young diagrams
    Masaya Kameyama
    Satoshi Nawata
    Runkai Tao
    Hao Derrick Zhang
    Letters in Mathematical Physics, 2020, 110 : 2573 - 2583
  • [20] Topological recursion for the extended Ooguri-Vafa partition function of colored HOMFLY-PT polynomials of torus knots
    Dunin-Barkowski, Peter
    Kazarian, Maxim
    Popolitov, Aleksandr
    Shadrin, Sergey
    Sleptsov, Alexey
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 26 (04)