HOMFLY-PT and Alexander polynomials from a doubled Schur algebra

被引:2
|
作者
Queffelec, Hoel [1 ]
Sartori, Antonio [2 ]
机构
[1] Univ Montpellier, CNRS, IMAG, Montpellier, France
[2] Albert Ludwigs Univ Freiburg, Math Inst, Eckerstr 1, D-79104 Freiburg, Germany
关键词
Schur algebras; knot invariants; Alexander polynomial; HOMFLY-PT polynomial; Reshetikhin-Turaev invariants;
D O I
10.4171/QT/109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a generalization of the Schur algebra which gives a unified setting for a quantum group presentation of the HOMFLY-PT polynomial, together with its specializations to the Alexander polynomial and to the sl(m) Reshetikhin-Turaev invariant.
引用
收藏
页码:323 / 347
页数:25
相关论文
共 50 条
  • [1] Colored HOMFLY-PT polynomials that distinguish mutant knots
    Nawata, Satoshi
    Ramadevi, P.
    Singh, Vivek Kumar
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (14)
  • [2] The HOMFLY-PT polynomials of sublinks and the Yokonuma-Hecke algebras
    d'Andecy, L. Poulain
    Wagner, E.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (06) : 1269 - 1278
  • [3] Combinatorial structure of colored HOMFLY-PT polynomials for torus knots
    Dunin-Barkowski, Petr
    Popolitov, Aleksandr
    Shadrin, Sergey
    Sleptsov, Alexey
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2019, 13 (04) : 763 - 826
  • [4] Satellite ruling polynomials, DGA representations, and the colored HOMFLY-PT polynomial
    Leverson, Caitlin
    Rutherford, Dan
    QUANTUM TOPOLOGY, 2020, 11 (01) : 55 - 118
  • [5] Structures in HOMFLY-PT Homology
    Chandler, Alex
    Gorsky, Eugene
    EXPERIMENTAL MATHEMATICS, 2024, 33 (04) : 817 - 842
  • [6] HOMFLY-PT HOMOLOGY OF COXETER LINKS
    A. OBLOMKOV
    L. ROZANSKY
    Transformation Groups, 2023, 28 : 1245 - 1275
  • [7] Higher genus knot contact homology and recursion for colored HOMFLY-PT polynomials
    Ekholm, Tobias
    Ng, Lenhard
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 24 (08)
  • [8] HOMFLY-PT HOMOLOGY OF COXETER LINKS
    Oblomkov, A.
    Rozansky, L.
    TRANSFORMATION GROUPS, 2023, 28 (3) : 1245 - 1275
  • [9] New structures for colored HOMFLY-PT invariants
    Shengmao Zhu
    ScienceChina(Mathematics), 2023, 66 (02) : 341 - 392
  • [10] Colored HOMFLY-PT polynomials of quasi-alternating 3-braid knots
    Singh, Vivek Kumar
    Chbili, Nafaa
    NUCLEAR PHYSICS B, 2022, 980