Non-Euclidean principal component analysis by Hebbian learning

被引:9
|
作者
Lange, Mandy [1 ]
Biehl, Michael [2 ]
Villmann, Thomas [1 ]
机构
[1] Univ Appl Sci Mittweida, Computat Intelligence Grp, D-09648 Mittweida, Germany
[2] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands
关键词
Principal component analysis; Hebbian learning; Kernel distances; Lp-norms; Semi-inner products; FUNCTIONAL PRINCIPAL; CLASSIFICATION; BASES;
D O I
10.1016/j.neucom.2013.11.049
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis based on Hebbian learning is originally designed for data processing in Euclidean spaces. We present in this contribution an extension of Oja's Hebbian learning approach for non-Euclidean spaces. We show that for Banach spaces the Hebbian learning can be carried out using the underlying semi-inner product. Prominent examples for such Banach spaces are the l(p)-spaces for p not equal 2. For kernels spaces, as applied in support vector machines or kernelized vector quantization, this approach can be formulated as an online learning scheme based on the differentiable kernel. Hence, principal component analysis can be explicitly carried out in the respective data spaces but now equipped with a non-Euclidean metric. In the article we provide the theoretical framework and give illustrative examples. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 119
页数:13
相关论文
共 50 条
  • [41] Non-Euclidean Ideal Spectrometry
    Sa Earp, Henrique N.
    Sicca, Vladmir
    Kyotoku, Bernardo B. C.
    BRAZILIAN JOURNAL OF PHYSICS, 2016, 46 (06) : 683 - 688
  • [42] Nonparametric Analysis of Non-Euclidean Data on Shapes and Images
    Bhattacharya, Rabi
    Oliver, Rachel
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2019, 81 (01): : 1 - 36
  • [43] A Family of Non-Euclidean PIDs
    Bevelacqua, Anthony J.
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (09): : 936 - 939
  • [44] ON NON-EUCLIDEAN HARMONIC MEASURE
    PINSKY, MA
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1985, 21 (01): : 39 - 46
  • [45] Non-Euclidean Dubins' problem
    Monroy-Pérez F.
    Journal of Dynamical and Control Systems, 1998, 4 (2) : 249 - 272
  • [46] Statistical shape analysis using non-Euclidean metrics
    Larsen, R
    Hilger, KB
    MEDICAL IMAGE ANALYSIS, 2003, 7 (04) : 417 - 423
  • [47] A Riemannian geometric framework for manifold learning of non-Euclidean data
    Jang, Cheongjae
    Noh, Yung-Kyun
    Park, Frank Chongwoo
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (03) : 673 - 699
  • [48] Non-Euclidean spring embedders
    Kobourov, SG
    Wampler, K
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2005, 11 (06) : 757 - 767
  • [49] IS VOWEL PERCEPTION NON-EUCLIDEAN
    TERBEEK, D
    HARSHMAN, R
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1972, 51 (01): : 81 - &
  • [50] CASE OF NON-EUCLIDEAN VISUALIZATION
    ROSEN, SM
    JOURNAL OF PHENOMENOLOGICAL PSYCHOLOGY, 1974, 5 (01) : 33 - 39