Non-Euclidean principal component analysis by Hebbian learning

被引:9
|
作者
Lange, Mandy [1 ]
Biehl, Michael [2 ]
Villmann, Thomas [1 ]
机构
[1] Univ Appl Sci Mittweida, Computat Intelligence Grp, D-09648 Mittweida, Germany
[2] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands
关键词
Principal component analysis; Hebbian learning; Kernel distances; Lp-norms; Semi-inner products; FUNCTIONAL PRINCIPAL; CLASSIFICATION; BASES;
D O I
10.1016/j.neucom.2013.11.049
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis based on Hebbian learning is originally designed for data processing in Euclidean spaces. We present in this contribution an extension of Oja's Hebbian learning approach for non-Euclidean spaces. We show that for Banach spaces the Hebbian learning can be carried out using the underlying semi-inner product. Prominent examples for such Banach spaces are the l(p)-spaces for p not equal 2. For kernels spaces, as applied in support vector machines or kernelized vector quantization, this approach can be formulated as an online learning scheme based on the differentiable kernel. Hence, principal component analysis can be explicitly carried out in the respective data spaces but now equipped with a non-Euclidean metric. In the article we provide the theoretical framework and give illustrative examples. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 119
页数:13
相关论文
共 50 条
  • [21] Non-Euclidean navigation
    Warren, William H.
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2019, 222
  • [22] NON-EUCLIDEAN ELASTICA
    JURDJEVIC, V
    AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (01) : 93 - 124
  • [23] NON-EUCLIDEAN GEOMETRY
    DESABBAT.V
    NUOVO CIMENTO, 1965, 38 (01): : 694 - +
  • [24] Non-Euclidean origami
    Waitukaitis, Scott
    Dieleman, Peter
    van Hecke, Martin
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [25] Non-euclidean geometry
    Pittard, HMS
    NATURE, 1912, 88 : 8 - 8
  • [26] EUCLIDEAN AND NON-EUCLIDEAN NORMS IN A PLANE
    SENECHALLE, DA
    ILLINOIS JOURNAL OF MATHEMATICS, 1971, 15 (02) : 281 - +
  • [27] Unsupervised learning with normalised data and non-Euclidean norms
    Doherty, K. A. J.
    Adams, R. G.
    Davey, N.
    APPLIED SOFT COMPUTING, 2007, 7 (01) : 203 - 210
  • [28] A Non-Euclidean Life
    Nash, Roger
    QUEENS QUARTERLY, 2012, 119 (01) : 150 - 150
  • [29] NON-EUCLIDEAN REVOLUTION
    TOTH, I
    RECHERCHE, 1977, 8 (75): : 143 - 151
  • [30] NON-EUCLIDEAN, CONVOLUTIONAL LEARNING ON CORTICAL BRAIN SURFACES
    Mostapha, Mahmoud
    Kim, SunHyung
    Wu, Guorong
    Zsembik, Leo
    Pizer, Stephen
    Styner, Martin
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 527 - 530