Principal component analysis based on Hebbian learning is originally designed for data processing in Euclidean spaces. We present in this contribution an extension of Oja's Hebbian learning approach for non-Euclidean spaces. We show that for Banach spaces the Hebbian learning can be carried out using the underlying semi-inner product. Prominent examples for such Banach spaces are the l(p)-spaces for p not equal 2. For kernels spaces, as applied in support vector machines or kernelized vector quantization, this approach can be formulated as an online learning scheme based on the differentiable kernel. Hence, principal component analysis can be explicitly carried out in the respective data spaces but now equipped with a non-Euclidean metric. In the article we provide the theoretical framework and give illustrative examples. (C) 2014 Elsevier B.V. All rights reserved.
机构:
Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
Mostapha, Mahmoud
Kim, SunHyung
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Psychiat, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
Kim, SunHyung
Wu, Guorong
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Radiol, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
Wu, Guorong
Zsembik, Leo
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Psychiat, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
Zsembik, Leo
Pizer, Stephen
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
Univ N Carolina, Dept Radiol, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
Pizer, Stephen
Styner, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
Univ N Carolina, Dept Psychiat, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
Styner, Martin
2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018),
2018,
: 527
-
530