Extending the Bernoulli-Euler method for finding zeros of holomorphic functions

被引:0
|
作者
Bernoussi, B
Rachidi, M
Saeki, O
机构
[1] Univ Abdelmalek Essaadi, ENSAT Tanger, Tanger, Morocco
[2] Univ Mohammed 5, Fac Sci, Dept Math & Informat, Rabat, Morocco
[3] Kyushu Univ, Fac Math, Hakozaki, Fukuoka 8128581, Japan
来源
FIBONACCI QUARTERLY | 2004年 / 42卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:55 / 65
页数:11
相关论文
共 50 条
  • [41] On the correction of the Bernoulli-Euler beam theory for smart piezoelectric beams
    Krommer, M
    SMART MATERIALS & STRUCTURES, 2001, 10 (04): : 668 - 680
  • [42] INFLUENCE OF MATERIAL DEFECTS ON THE DYNAMIC STABILITY OF THE BERNOULLI-EULER BEAM
    Sochacki, W.
    Garus, S.
    Garus, J.
    ARCHIVES OF METALLURGY AND MATERIALS, 2021, 66 (02) : 519 - 522
  • [43] The dynamic stiffness matrix of a rotating asymmetric Bernoulli-Euler shaft
    Raffa, FA
    Vatta, F
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2001, 123 (03): : 408 - 411
  • [45] Modelling a Rotating Shaft as an Elastically Restrained Bernoulli-Euler Beam
    Silva, T. A. N.
    Maia, N. M. M.
    PROCEEDINGS OF ISMA2010 - INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING INCLUDING USD2010, 2010, : 1635 - 1645
  • [46] Zeros of generalized holomorphic functions
    Khelif, A.
    Scarpalezos, D.
    MONATSHEFTE FUR MATHEMATIK, 2006, 149 (04): : 323 - 335
  • [47] Modelling a Rotating Shaft as an Elastically Restrained Bernoulli-Euler Beam
    Silva, T. A. N.
    Maia, N. M. M.
    EXPERIMENTAL TECHNIQUES, 2013, 37 (05) : 6 - 13
  • [48] Stability of the Bernoulli-Euler Beam in Coupled Electric and Thermal Fields
    Morozov, N. F.
    Indeitsev, D. A.
    Lukin, A. V.
    Popov, I. A.
    Privalova, O. V.
    Shtukin, L. V.
    DOKLADY PHYSICS, 2018, 63 (08) : 342 - 347
  • [49] A new characterization for classical Bernoulli-Euler elastic curves in Rn
    Altin, Ayse
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (07)
  • [50] Formulas for an infinitely long Bernoulli-Euler beam on the Pasternak model
    Tanahashi, H
    SOILS AND FOUNDATIONS, 2004, 44 (05) : 109 - 118